Skip to main content

Advertisement

Log in

Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36:1978–1991

    Article  PubMed  Google Scholar 

  2. Ofek G, Willard VP, Koay EJ, Hu JC, Lin P, Athanasiou KA (2009) Mechanical characterization of differentiated human embryonic stem cells. J Biomech Eng 131(6):061011

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sens P, Plastino J (2015) Membrane tension and cytoskeleton organization in cell motility. J Phys Condens Matter 27(27):273103

    Article  CAS  PubMed  Google Scholar 

  4. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  5. Morrison B 3rd, Saatman KE, Meaney DF, McIntosh TK (1998) In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15(11):911–928

    Article  PubMed  Google Scholar 

  6. Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7(10):e46609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783

    Article  CAS  PubMed  Google Scholar 

  8. Ramos JR, Pabijan J, Garcia R, Lekka M (2014) The softening of human bladder cancer cells happens at an early stage of the malignancy process. Beilstein J Nanotechnol 10(5):447–457

    Article  CAS  Google Scholar 

  9. Mierke CT, Frey B, Fellner M, Herrmann M, Fabry B (2011) Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. J Cell Sci 124(Pt 3):369–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J Cell Sci 123:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Samani A, Plewes D (2004) A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys Med Biol 49:4395–4405

    Article  PubMed  Google Scholar 

  12. Depalle B, Qin Z, Shefelbine SJ, Buehler MJ (2015) Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater 52:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  13. Canetta Elisabetta, Duperray Alain, Leyrat Anne, Verdier Claude (2005) Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions. Biorheology 42(5):321–333

    CAS  PubMed  PubMed Central  Google Scholar 

  14. García AJ, Reyes CD (2005) Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 84(5):407–413

    Article  PubMed  Google Scholar 

  15. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  16. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585

    Article  CAS  PubMed  Google Scholar 

  17. Bernstein LR, Liotta LA (1994) Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr Opin Oncol 6(1):106–113

    Article  CAS  PubMed  Google Scholar 

  18. Stamenović D, Ingber DE (2009) Tensegrity-guided self-assembly: from molecules to living cells. Soft Matter 5(6):1137–1145

    Article  Google Scholar 

  19. Alonso JL, Goldmann WH (2016) Cellular mechanotransduction. AIMS. Biophysics 3(1):50–62

    Article  CAS  Google Scholar 

  20. Jay DH, Eric RD, Martin AS (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812

    Google Scholar 

  21. Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G (2018) Cellular mechanotransduction: from tension to function. Front Physiol 9:824

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dunn GA, Brown AF (1986) Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J Cell Sci 83:313–340

    CAS  PubMed  Google Scholar 

  23. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34

    Article  PubMed  Google Scholar 

  24. Trepat X, Lenormand G, Fredberg JJ (2008) Universality in cell mechanics. Soft Matter 4(9):1750–1759

    Article  CAS  Google Scholar 

  25. Rodriguez ML, McGarry PJ, Sniadecki NJ (2013) Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev 65(6):060801

    Article  Google Scholar 

  26. Moeendarbary E, Harris AR (2014) Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med 6(5):371–388

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH (2015) A guide to mechanobiology: where biology and physics meet. Biochim Biophys Acta 1853(11 Pt B):3043–3052

    Article  CAS  PubMed  Google Scholar 

  28. Nestor-Bergmann A, Johns E, Sarah Woolner, Jensen OE (2018) Mechanical characterization of disordered and anisotropic cellular monolayers. Phys Rev E 97(5):052409

    Article  PubMed  Google Scholar 

  29. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pritchard RH, Huang YYS, Terentjev EM (2014) Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter 10(12):1864–1884

    Article  CAS  PubMed  Google Scholar 

  31. Gardel ML, Kasza KE, Brangwynne CP, Liu J, Weitz DA (2015) Mechanical response of cytoskeletal networks. Methods Cell Biol 89:487–519

    Article  CAS  Google Scholar 

  32. Hohmann T, Dehghani F (2019) The cytoskeleton-A complex interacting meshwork. Cells 8(4):362

    Article  CAS  PubMed Central  Google Scholar 

  33. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. Freeman, New York

    Google Scholar 

  34. Kreis T, Vale R (1999) Cytoskeletal and motor proteins. Oxford University Press, Oxford

    Google Scholar 

  35. Knowles GC, McCUUOCH CAG (1992) Simultaneous localization and quantification of relative G and F actin content: optimization of fluorescence labeling methods. J Histochem Cytochem 40(10):1605–1612

    Article  CAS  PubMed  Google Scholar 

  36. Pollard TD (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103:2747–2754

    Article  CAS  PubMed  Google Scholar 

  37. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kubitschke H, Schnauss J, Nnetu KD, Warmt E, Stange R, Kaes J (2017) Actin and microtubule networks contribute differently to cell response for small and large strains. New J Phys 19:093003

    Article  CAS  Google Scholar 

  39. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78(1):520–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. MacLean-Fletcher S, Pollard TD (1980) Mechanism of action of cytochalasin B on actin. Cell 20(2):329–341

    Article  CAS  PubMed  Google Scholar 

  41. Ping Ting-Beall H, Lee Anne S, Hochmuth Robert M (1995) Effect of cytochalasin D on the mechanical properties and morphology of passive human neutrophils. Ann Biomed Eng 23(5):666–671

    Article  Google Scholar 

  42. Goddette DW, Frieden C (1986) Actin polymerization. The mechanism of action of cytochalasin D. J Biol Chem 261(34):15974–15980

    CAS  PubMed  Google Scholar 

  43. Holzinger A (2009) Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol Biol 586:71–87

    Article  CAS  PubMed  Google Scholar 

  44. Kunschmann T, Puder S, Fischer T, Steffen A, Rottner K, Mierke CT (2019) The small GTPase Rac1 increases cell surface stiffness and enhances 3D migration into extracellular matrices. Sci Rep 9:7675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai X, Xing X, Cai J, Chen Q, Wu S, Huang F (2010) Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: an AFM study. Micron 41(3):257–262

    Article  CAS  PubMed  Google Scholar 

  46. Grady ME, Composto RJ, Eckmann DM (2016) Cell elasticity with altered cytoskeletal architectures across multiple cell types. J Mech Behav Biomed Mater 61:197–207

    Article  CAS  PubMed  Google Scholar 

  47. Saito H, Minamiya Y, Kalina U, Saito S, Ogawa J (2005) Effect of antithrombin III on neutrophil deformability. J Leukoc Biol 78(3):777–784

    Article  CAS  PubMed  Google Scholar 

  48. Tavares S, Vieira AF, Taubenberger AV, Araújo M, Martins NP, Brás-Pereira C, Polónia A, Herbig M, Barreto C, Otto O, Cardoso J, Pereira-Leal JB, Guck J, Paredes J, Janody F (2017) Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat Commun 8:15237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305

    Article  CAS  PubMed  Google Scholar 

  50. Schulze C, Wetzel F, Kueper T, Malsen A, Muhr G, Jaspers S, Blatt T, Wittern KP, Wenck H, Käs JA (2012) Stiffening of human skin fibroblasts with age. Clin Plast Surg 39(1):9–20

    Article  PubMed  Google Scholar 

  51. Kassianidou E, Kumar S (2015) A biomechanical perspective on stress fiber structure and function. Biochem Biophys Acta 1853(11):3065–3074

    Article  CAS  PubMed  Google Scholar 

  52. Gardel ML et al (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305

    Article  CAS  PubMed  Google Scholar 

  53. Head DA, Levine AJ, MacKintosh FC (2003) Deformation of cross-linked semiflexible polymer networks. Phys Rev Lett 91(10):108102

    Article  CAS  PubMed  Google Scholar 

  54. Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E Stat Nonlin Soft Matter Phys 68(6 Pt 1):061907

    Article  CAS  PubMed  Google Scholar 

  55. Stricker J, Falzone T, Gardel M (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43(1):9–14

    Article  PubMed  Google Scholar 

  56. Peterson LJ, Rajfur Z, Maddox AS, Freel CD, Chen Y, Edlund M, Otey C, Burridge K (2004) Simultaneous stretching and contraction of stress fibers in vivo. Mol Biol Cell 15(7):3497–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weber K, Groeschel-Stewart U (1974) Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc Natl Acad Sci USA 71(11):4561–4564

    Article  CAS  PubMed  Google Scholar 

  58. Cramer LP, Siebert M, Mitchison TJ (1997) Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J Cell Biol 136:1287–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adams JC (1995) Formation of stable microspikes containing actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: implications for the anti-adhesive activities of thrombospondin-1. J Cell Sci 108:1977–1990

    CAS  PubMed  Google Scholar 

  60. Chen B, Li A, Wang D, Wang M, Zheng L, Bartles JR (1999) Espin contains an additional actin-binding site in its N terminus and is a major actin-bundling protein of the sertoli cell-spermatid ectoplasmic specialization junctional plaque. Mol Biol Cell 10:4327–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang K, Ash JF, Singer SJ (1975) Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc Natl Acad Sci USA 72:4483–4486

    Article  CAS  PubMed  Google Scholar 

  62. Lu L, Oswald SJ, Ngu H, Yin FC (2008) Mechanical properties of actin stress fibers in living cells. Biophys J 95(12):6060–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34(12):1545–1553

    Article  CAS  PubMed  Google Scholar 

  64. Stricker J, Falzone T, Gardel ML (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43(1):9–14

    Article  PubMed  Google Scholar 

  65. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473

    Article  PubMed  Google Scholar 

  66. Van Troys M, Vandekerckhove J, Ampe C (1999) Structural modules in actin-binding proteins: towards a new classification. Biochim Biophys Acta 1448(3):323–348

    Article  PubMed  Google Scholar 

  67. Blanchard A, Ohanian V, Critchley D (1989) The structure and function of alpha-actinin. J Muscle Res Cell Motil 10:280–289

    Article  CAS  PubMed  Google Scholar 

  68. Masaki T, Endo M, Ebashi S (1967) Localization of 6S component of a alpha-actinin at Z-band. J Biochem 62:630–632

    Article  CAS  PubMed  Google Scholar 

  69. Bond M, Somlyo AV (1982) Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 95:403–413

    Article  CAS  PubMed  Google Scholar 

  70. Lazarides E, Burridge K (1975) Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6:289–298

    Article  CAS  PubMed  Google Scholar 

  71. Wachsstock D, Schwarz WH, Pollard TD (1993) Affinity of a-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J 65:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Esue Osigwe, Tseng Yiider, Wirtz Denis (2009) α-Actinin and filamin cooperatively enhance the stiffness of actin filament networks. PLoS One 4(2):e4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA (2006) Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci USA 103(6):1762–1767

    Article  CAS  PubMed  Google Scholar 

  74. Tseng Y, An KM, Esue O, Wirtz D (2004) The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem 279:1819–1826

    Article  CAS  PubMed  Google Scholar 

  75. Tseng Y, Wirtz D (2001) Mechanics and multiple-particle tracking microheterogeneity of alpha-actinin-cross-linked actin filament networks. Biophys J 81:1643–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tseng Y, Fedorov E, McCaffery JM, Almo SC, Wirtz D (2001) Micromechanics and microstructure of actin filament networks in the presence of the actin-bundling protein human fascin: a comparison with a-actinin. J Mol Biol 310:351–366

    Article  CAS  PubMed  Google Scholar 

  77. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194

    Article  CAS  PubMed  Google Scholar 

  78. Pegoraro AF, Janmey P, Weitz DA (2017) Mechanical properties of the cytoskeleton and Cells. Cold Spring Harb Perspect Biol 9(11):a022038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jackson WM, Jaasma MJ, Baik AD, Keaveny TM (2008) Over-expression of alpha-actinin with a GFP fusion protein is sufficient to increase whole-cell stiffness in human osteoblasts. Ann Biomed Eng 36(10):1605–1614

    Article  PubMed  Google Scholar 

  80. Tseng Y, Kole TP, Lee JS, Fedorov E, Almo SC, Schafer BW, Wirtz D (2005) How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem Biophys Res Commun 334(1):183–192

    Article  CAS  PubMed  Google Scholar 

  81. Uyeda TQ, Iwadate Y, Umeki N, Nagasaki A, Yumura S (2011) Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS One 6(10):e26200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Westphal M, Jungbluth A, Heidecker M, Mühlbauer B, Heizer C, Schwartz JM, Marriott G, Gerisch G (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol 7:176–183

    Article  CAS  PubMed  Google Scholar 

  83. Asano Y, Mizuno T, Kon T, Nagasaki A, Sutoh K, Uyeda TQ (2004) Keratocyte-like locomotion in amiB-null Dictyostelium cells. Cell Motil Cytoskeleton 59:17–27

    Article  CAS  PubMed  Google Scholar 

  84. Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci USA 106(36):15192–15197

    Article  PubMed  Google Scholar 

  85. Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci USA 106(36):15192–15197

    Article  PubMed  Google Scholar 

  86. Stewart M, Kensler R (1986) Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. J Mol Biol 192:831–851

    Article  CAS  PubMed  Google Scholar 

  87. Schäfer A, Radmacher M (2005) Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater 1(3):273–280

    Article  PubMed  Google Scholar 

  88. Martens JC, Radmacher M (2008) Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch 456(1):95–100

    Article  CAS  PubMed  Google Scholar 

  89. Langanger G, de Mey J, Moeremans M, Daneels G, de Brabander M, Small JV (1984) Ultrastructural localization of alpha-actinin and filamin in cultured cells with the immunogold staining (IGS) method. J Cell Biol 99(4 Pt 1):1324–1334

    Article  CAS  PubMed  Google Scholar 

  90. Bloch RJ, Hall ZW (1983) Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alpha-actinin, and filamin. J Cell Biol 97:217–223

    Article  CAS  PubMed  Google Scholar 

  91. Kasza KE, Nakamura F, Hu S, Kollmannsberger P, Bonakdar N, Fabry B, Stossel TP, Wang N, Weitz DA (2009) Filamin A is essential for active cell stiffening but not passive stiffening under external force. Biophys J 96(10):4326–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kato K, Ohmori Y, Mizutani T, Haga H, Ohashi K, Ito T, Kawabata K (2006) The role of actin-binding protein filamin a in cellular stiffness and morphology studied by wide-range scanning probe microscopy. Jpn J Appl Phys 45(1):2328

    Article  CAS  Google Scholar 

  93. Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, Bamburg JR, Jeffrey PL, Hardeman EC, Gunning P, Weinberger RP (2003) Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 14(3):1002–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McMichael BK, Kotadiya P, Singh T, Holliday LS, Lee BS (2006) Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone 39:694–705

    Article  CAS  PubMed  Google Scholar 

  95. Coulton AT, East DA, Galinska-Rakoczy A, Lehman W, Mulvihill DP (2010) The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J Cell Sci 123:3235–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Creed SJ, Desouza M, Bamburg JR, Gunning P, Stehn J (2011) Tropomyosin isoform 3 promotes the formation of filopodia by regulating the recruitment of actin-binding proteins to actin filaments. Exp Cell Res 317:249–261

    Article  CAS  PubMed  Google Scholar 

  97. Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35

    Article  CAS  PubMed  Google Scholar 

  98. Sui Z, Gokhin DS, Nowak RB, Guo X, An X, Fowler VM (2017) Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells. Mol Biol Cell 28(19):2531–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jalilian I, Heu C, Cheng H, Freittag H, Desouza M, Stehn JR, Bryce NS, Whan RM, Hardeman EC, Fath T, Schevzov G, Gunning PW (2015) Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton. PLoS One 10(5):e0126214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Steinert Peter M, Jones Jonathan CR, Robert D (1984) Goldman, intermediate filaments. J Cell Biol 99(1):22s–27s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stewart Murray (1993) Intermediate filament structure and assembly. Curr Opin Cell Biol 5(1):3–11

    Article  CAS  PubMed  Google Scholar 

  102. Coulombe Pierre A, Ma Linglei, Yamada Soichiro, Wawersik Matthew (2001) Intermediate filaments at a glance. J Cell Sci 114(24):4345–4347

    CAS  PubMed  Google Scholar 

  103. Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351(20):2087–2100

    Article  CAS  PubMed  Google Scholar 

  104. Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH, Moore JR, Fredberg JJ, Goldman RD, Weitz DA (2013) The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J 105(7):1562–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lowery Jason, Kuczmarski Edward R, Herrmann Harald, Goldma Robert D (2015) Intermediate filaments play a pivotal role in regulating cell architecture and function. Cell Mol Biol 290(28):17145–17153

    CAS  Google Scholar 

  106. Haudenschild DR, Chen J, Pang N, Steklov N, Grogan SP, Lotz MK, D’Lima DD (2011) Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis. J Orthop Res 29(1):20–25

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mendez MG, Restle D, Janmey PA (2014) Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys J 107(2):314–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Eggli PS, Hunziker EB, Schenk RK (1988) Quantitation of structural features characterizing weight- and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits. Anat Rec 222(3):217–227

    Article  CAS  PubMed  Google Scholar 

  109. Plodinec M, Loparic M, Suetterlin R, Herrmann H, Aebi U, Schoenenberger CA (2011) The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system. J Struct Biol 174(3):476–484

    Article  CAS  PubMed  Google Scholar 

  110. Liu CY, Lin HH, Tang MJ, Wang YK (2015) Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 6(18):15966–15983

    PubMed  PubMed Central  Google Scholar 

  111. Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH, Moore JR, Fredberg JJ, Goldman RD, Weitz DA (2013) The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J 105(7):1562–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Magin TM, Vijayaraj P, Leube RE (2007) Structural and regulatory functions of keratins. Exp Cell Res 313(10):2021–2032

    Article  CAS  PubMed  Google Scholar 

  113. Haines RL, Lane EB (2012) Keratins and disease at a glance. J Cell Sci 125(Pt 17):3923–3928

    Article  CAS  PubMed  Google Scholar 

  114. Sivaramakrishnan S, DeGiulio JV, Lorand L, Goldman RD, Ridge KM (2008) Micromechanical properties of keratin intermediate filament networks. Proc Natl Acad Sci USA 105(3):889–894

    Article  PubMed  Google Scholar 

  115. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38(8):824–833

    Article  CAS  PubMed  Google Scholar 

  116. Lulevich V, Yang HY, Isseroff RR, Liu GY (2010) Single cell mechanics of keratinocyte cells. Ultramicroscopy 110(12):1435–1442

    Article  CAS  PubMed  Google Scholar 

  117. Fung CK, Xi N, Yang R, Seiffert-Sinha K, Lai KW, Sinha AA (2011) Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy. IEEE Trans Nanobiosci 10(1):9–15

    Article  Google Scholar 

  118. Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, Lazar J, Stiefel S, Hersch N, Schnakenberg U, Magin TM, Leube RE, Merkel R, Hoffmann B (2013) Keratins as the main component for the mechanical integrity of keratinocytes. Proc Natl Acad Sci USA 110(46):18513–18518

    Article  CAS  PubMed  Google Scholar 

  119. Kristin S, Anatol WF, Josef AK, Thomas MM (2013) Keratins significantly contribute to cell stiffness and impact invasive behavior. PNAS 110(46):18507–18512

    Article  CAS  Google Scholar 

  120. Bernal A, Arranz L (2018) Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci 75(12):2177–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M, Ishiwata T (2011) Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther 11:512–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY, Epstein JI, Berman DM (2007) Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res 67:9199–9206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ayana Y, Moe S, Yuta T, Mei M, Mari M, Masumi I, Shun’ichi K, Tomoko O, Chikashi N (2019) The structural function of nestin in cell body softening is correlated with cancer cell metastasis. Int J Biol Sci 15(7):1546–1556

    Article  CAS  Google Scholar 

  124. Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302

    Article  CAS  PubMed  Google Scholar 

  125. Avila J (1992) Microtubule functions. Life Sci 50(5):327–334

    Article  CAS  PubMed  Google Scholar 

  126. Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34

    Article  CAS  PubMed  Google Scholar 

  127. Trickey WR, Vail TP, Guilak F (2004) The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res 22(1):131–139

    Article  PubMed  Google Scholar 

  128. PyleK SJ, Reuhl R (2010) Cytoskeletal elements in neurotoxicity, 2nd edn. In: Comprehensive toxicology, vol 13, pp 71–87

  129. Brady S, Colman DR, Brophy P (2014) Subcellular organization of the nervous system: organelles and their functions, 3rd edn. In: From molecules to networks, pp 23–52

  130. Shah JV, Wang LZ, Traub P, Janmey PA (1998) Interaction of vimentin with actin and phospholipids. Biol Bull 194(3):402–405

    Article  CAS  PubMed  Google Scholar 

  131. Feher J (2017) Cell structure, 2nd edn. In: Quantitative human physiology, pp 101–119

  132. Nick P (2011) Mechanics of the cytoskeleton. In: Mechanical integration of plant cells and plants, pp 53–90

  133. Mücke N, Kreplak L, Kirmse R, Wedig T, Herrmann H, Aebi U, Langowski J (2004) Assessing the flexibility of intermediate filaments by atomic force microscopy. J Mol Biol 335(5):1241–1250

    Article  CAS  PubMed  Google Scholar 

  134. Guzmán C, Jeney S, Kreplak L, Kasas S, Kulik AJ, Aebi U, Forró L (2006) Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. J Mol Biol 360(3):623–630

    Article  CAS  PubMed  Google Scholar 

  135. Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113(1):155–160

    Article  CAS  PubMed  Google Scholar 

  136. Gowing LR, Tellam RL, Banyard MR (1984) Microfilament organization and total actin content are decreased in hybrids derived from the fusion of HeLa cells with human fibroblasts. J Cell Sci 69:137–146

    CAS  PubMed  Google Scholar 

  137. Bray D, Thomas C (1975) The actin content of fibroblasts. Biochem J 147(2):221–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Inoue D, Obino D, Pineau J, Farina F, Gaillard J, Guerin C, Blanchoin L, Lennon-Duménil AM, Théry M (2019) Actin filaments regulate microtubule growth at the centrosome. EMBO J 38(11):e99630

    Article  CAS  PubMed  Google Scholar 

  139. Wang N, Stamenovic D (2002) Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motil 23(5–6):535–540

    Article  PubMed  Google Scholar 

  140. Ackbarow Theodor, Buehler Markus J (2007) Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. J Mater Sci 42(21):8771–8787

    Article  CAS  Google Scholar 

  141. Rao JY, Hurst RE, Bales WD, Jones PL, Bass RA, Archer LT, Bell PB, Hemstreet GP 3rd (1990) Cellular F-actin levels as a marker for cellular transformation: relationship to cell division and differentiation. Cancer Res 50(8):2215–2220

    CAS  PubMed  Google Scholar 

  142. Jensen MH, Morris EJ, Goldman RD, Weitz DA (2014) Emergent properties of composite semiflexible biopolymer networks. Bioarchitecture 4(4–5):138–143

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant No. NRF-2017R1A2B2010145).

Author information

Authors and Affiliations

Authors

Contributions

Sangwoo Kwon and Kyung Sook Kim conceived this article and wrote the manuscript.

Corresponding author

Correspondence to Kyung Sook Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, S., Kim, K.S. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell. Mol. Life Sci. 77, 1345–1355 (2020). https://doi.org/10.1007/s00018-019-03328-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03328-6

Keywords

Navigation