Skip to main content

Advertisement

Log in

Time after time: circadian clock regulation of intestinal stem cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Daily fluctuations in animal physiology, known as circadian rhythms, are orchestrated by a conserved molecular timekeeper, known as the circadian clock. The circadian clock forms a transcription–translation feedback loop that has emerged as a central biological regulator of many 24-h processes. Early studies of the intestine discovered that many digestive functions have a daily rhythm and that intestinal cell production was similarly time-dependent. As genetic methods in model organisms have become available, it has become apparent that the circadian clock regulates many basic cellular functions, including growth, proliferation, and differentiation, as well as cell signalling and stem cell self-renewal. Recent connections between circadian rhythms and immune system function, and between circadian rhythms and microbiome dynamics, have also been revealed in the intestine. These processes are highly relevant in understanding intestinal stem cell biology. Here we describe the circadian clock regulation of intestinal stem cells primarily in two model organisms: Drosophila melanogaster and mice. Like all cells in the body, intestinal stem cells are subject to circadian timing, and both cell-intrinsic and cell-extrinsic circadian processes contribute to their function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Apc:

Adenomatous polyposis complex

Ascl2:

Achaete scute-like homolog 2

Bmal1:

Brain and muscle Aryl hydrocarbon receptor nuclear translocator like

Bmi1:

B-cell-specific moloney murine leukemia virus integration site 1

Bmp:

Bone morphogenic protein

CBC:

Crypt base columnar cell

ChIP:

Chromatin immunoprecipitation

Chk:

Checkpoint kinase

Ck1:

Casein kinase 1

Clk:

Clock

Clock:

Circadian locomotor output cycles kaput

Cry:

Cryptochrome

Cxcl12:

C-X-C chemokine ligand 12

Cxcr4:

C-X-C chemokine receptor type 4

Cyc:

Cycle

Gsk3:

Glycogen synthase kinase 3

Hopx:

Homeoboxdomain-only protein

IBD:

Inflammatory bowel disease

IL:

Interleukin

ISC:

Intestinal stem cell

Jak/Stat:

Janus kinase/signal transducers and activators of transcription

Klf9:

Kruppel-like factor 9

Lgr5:

Leucine-rich repeat-containing G-protein coupled receptor 5

Lrig1:

Leucine-rich repeats and immunoglobin-like domains-protein 1

Lrp:

Low density lipoprotein receptor

Mapk:

Mitogen-activated protein kinase

mTOR:

Mammalian target of rapamycin

Olfm4:

Olfactomedin 4

Per:

Period

Ror:

Retinoic acid receptor-related orphan receptors

S6K:

S6 kinase

Sirt1:

Sirtuin-1

Tert1:

Telomerase reverse transcriptase

Tim:

Timeless

Tnf:

Tumour necrosis factor

Upd:

Unpaired

Vri:

Vrille

Pdp1:

PAR domain protein-1

Wee1:

Wee1 G2 checkpoint kinase

Xpa:

Xeroderma pigmentosum group A

References

  1. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18(3):164

    Article  CAS  PubMed  Google Scholar 

  2. Hardin PE (2011) Molecular genetic analysis of circadian timekeeping in Drosophila. Advances in genetics, vol 74. Elsevier, Amsterdam, pp 141–173

    Google Scholar 

  3. Turek FW (2016) Circadian clocks: not your grandfather’s clock. Science 354(6315):992–993

    Article  CAS  PubMed  Google Scholar 

  4. de Mairan JJ (1729) Observation botanique. Histoire de l’Académie Royale des Sciences, Paris

    Google Scholar 

  5. Gardner GF, Feldman JF (1980) The frq locus in Neurospora crassa: a key element in circadian clock organization. Genetics 96(4):877–886

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kalmus H (1935) Periodizität und autochronie (ideochronie) als zeitregelnde eigenschaffen der organismen. Biol Gen 11:93–114

    Google Scholar 

  7. Bunning E (1935) Zur Kenntnis der endonomen Tagesrhythmik bei Insekten und bei Pflanzen. Ber Deut Bot Ges 53:594–623

    Google Scholar 

  8. Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci USA 40(10):1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci 68(9):2112–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aschoff J (1966) Circadian activity pattern with two peaks. Ecology 47(4):657–662

    Article  Google Scholar 

  11. Bargiello TA, Young MW (1984) Molecular genetics of a biological clock in Drosophila. Proc Natl Acad Sci 81(7):2142–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karpowicz P, Zhang Y, Hogenesch JB, Emery P, Perrimon N (2013) The circadian clock gates the intestinal stem cell regenerative state. Cell Rep 3(4):996–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore SR, Pruszka J, Vallance J, Aihara E, Matsuura T, Montrose MH, Shroyer NF, Hong CI (2014) Robust circadian rhythms in organoid cultures from PERIOD2: LUCIFERASE mouse small intestine. Dis Models Mech 7(9):1123–1130

    Article  CAS  Google Scholar 

  14. Matsu-ura T, Dovzhenok A, Aihara E, Rood J, Le H, Ren Y, Rosselot AE, Zhang T, Lee C, Obrietan K, Montrose MH, Lim S, Moore SR, Hong CI (2016) Intercellular coupling of the cell cycle and circadian clock in adult stem cell culture. Mol Cell 64(5):900–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stokes K, Cooke A, Chang H, Weaver DR, Breault DT, Karpowicz P (2017) The circadian clock gene BMAL1 coordinates intestinal regeneration. Cell Mol Gastroenterol Hepatol 4(1):95–114

    Article  PubMed  PubMed Central  Google Scholar 

  16. Parasram K, Bernardon N, Hammoud M, Chang H, He L, Perrimon N, Karpowicz P (2018) Intestinal Stem cells exhibit conditional circadian clock function. Stem Cell Rep 11(5):1287–1301

    Article  CAS  Google Scholar 

  17. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci 111(45):16219–16224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, Ngotho M, Kariuki T, Dkhissi-Benyahya O, Cooper HM, Panda S (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359(6381):eaao0318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320

    Article  CAS  PubMed  Google Scholar 

  20. Bass J, Lazar MA (2016) Circadian time signatures of fitness and disease. Science 354(6315):994–999

    Article  CAS  PubMed  Google Scholar 

  21. Panda S (2016) Circadian physiology of metabolism. Science 354(6315):1008–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9(12):886

    Article  CAS  PubMed  Google Scholar 

  23. Momma T, Okayama H, Saitou M, Sugeno H, Yoshimoto N, Takebayashi Y, Ohki S, Takenoshita S (2017) Expression of circadian clock genes in human colorectal adenoma and carcinoma. Oncol Lett 14(5):5319–5325

    PubMed  PubMed Central  Google Scholar 

  24. Alhopuro P, Björklund M, Sammalkorpi H, Turunen M, Tuupanen S, Biström M, Niittymäki I, Lehtonen HJ, Kivioja T, Launonen V, Saharinen J, Nousiainen K, Hautaniemi S, Nuorva K, Mecklin J-P, Jarvinen H, Orntoft T, Arango D, Lehtonen R, Karhu A, Taipale J, Aaltonen LA (2010) Mutations in the circadian gene CLOCK in colorectal cancer. Mol Cancer Res 8(7):952–960

    Article  CAS  PubMed  Google Scholar 

  25. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pagel R, Bär F, Schröder T, Sünderhauf A, Künstner A, Ibrahim SM, Autenrieth SE, Kalies K, König P, Tsang AH, Bettenworth D, Divanovic S, Lehnert H, Fellermann K, Oster H, Derer S, Sina C (2017) Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. FASEB J 31(11):4707–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Fuchs CS, Richter JM, Schernhammer ES, Chan AT (2014) Sleep duration affects risk for ulcerative colitis: a prospective cohort study. Clin Gastroenterol Hepatol 12(11):1879–1886

    Article  PubMed  PubMed Central  Google Scholar 

  28. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308(5724):1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scott E, Carter A, Grant P (2008) Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes 32(4):658

    Article  CAS  Google Scholar 

  30. Allada R, White NE, So WV, Hall JC, Rosbash M (1998) A mutant drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93(5):791–804. https://doi.org/10.1016/S0092-8674(00)81440-3

    Article  CAS  PubMed  Google Scholar 

  31. Hao H, Allen DL, Hardin PE (1997) A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol 17(7):3687–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5):805–814

    Article  CAS  PubMed  Google Scholar 

  33. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, Weitz CJ, Takahashi JS, Kay SA (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280(5369):1599–1603

    Article  CAS  PubMed  Google Scholar 

  34. Lee C, Bae K, Edery I (1999) PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. Mol Cell Biol 19(8):5316–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94(1):97–107

    Article  CAS  PubMed  Google Scholar 

  36. Kloss B, Rothenfluh A, Young MW, Saez L (2001) Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron 30(3):699–706

    Article  CAS  PubMed  Google Scholar 

  37. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW (1998) double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94(1):83–95

    Article  CAS  PubMed  Google Scholar 

  38. Cyran SA, Buchsbaum AM, Reddy KL, Lin M-C, Glossop NR, Hardin PE, Young MW, Storti RV, Blau J (2003) vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112(3):329–341

    Article  CAS  PubMed  Google Scholar 

  39. Glossop NR, Houl JH, Zheng H, Ng FS, Dudek SM, Hardin PE (2003) VRILLE feeds back to control circadian transcription of clock in the Drosophila circadian oscillator. Neuron 37(2):249–261

    Article  CAS  PubMed  Google Scholar 

  40. Lim C, Chung BY, Pitman JL, McGill JJ, Pradhan S, Lee J, Keegan KP, Choe J, Allada R (2007) Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr Biol 17(12):1082–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng X, Koh K, Sowcik M, Smith CJ, Chen D, Wu MN, Sehgal A (2009) An isoform-specific mutant reveals a role of PDP1ε in the circadian oscillator. J Neurosci 29(35):10920–10927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18(5):1177–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vitaterna MH, King DP, Chang A-M, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264(5159):719–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, McKnight SL (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301(5631):379–383

    Article  CAS  PubMed  Google Scholar 

  46. DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10(5):543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400(6740):169

    Article  CAS  PubMed  Google Scholar 

  48. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288(5468):1013–1019

    Article  CAS  PubMed  Google Scholar 

  49. Cermakian N, Monaco L, Pando MP, Dierich A, Sassone-Corsi P (2001) Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J 20(15):3967–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30(2):525–536

    Article  CAS  PubMed  Google Scholar 

  51. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105(5):683–694

    Article  CAS  PubMed  Google Scholar 

  52. Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282(5393):1490–1494

    Article  CAS  PubMed  Google Scholar 

  53. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci 96(21):12114–12119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S-i, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs RM, Bootsma D, Hoeijmakers JH, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627

    Article  PubMed  Google Scholar 

  55. Preitner N, Damiola F, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260

    Article  CAS  PubMed  Google Scholar 

  56. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43(4):527–537

    Article  CAS  PubMed  Google Scholar 

  57. Masana MI, Sumaya IC, Becker-Andre M, Dubocovich ML (2007) Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORβ knockout. Am J Physiol Regul Integr Comp Physiol 292(6):R2357–R2367

    Article  CAS  PubMed  Google Scholar 

  58. Koike N, Yoo S-H, Huang H-C, Kumar V, Lee C, Kim T-K, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935

    Article  CAS  PubMed  Google Scholar 

  60. Pincus G (1943) A diurnal rhythm in the excretion of urinary ketosteroids by young men. J Clin Endocrinol 3(4):195–199

    Article  CAS  Google Scholar 

  61. Andrews RV, Folk GE Jr (1964) Circadian metabolic patterns in cultured hamster adrenal glands. Comp Biochem Physiol 11(4):393–409

    Article  CAS  PubMed  Google Scholar 

  62. Kaneko M, Hiroshige T, Shinsako J, Dallman MF (1980) Diurnal changes in amplification of hormone rhythms in the adrenocortical system. Am J Physiol Regul Integr Comp Physiol 239(3):R309–R316

    Article  CAS  Google Scholar 

  63. Kaneko M, Kaneko K, Shinsako J, Dallman MF (1981) Adrenal sensitivity to adrenocorticotropin varies diurnally. Endocrinology 109(1):70–75

    Article  CAS  PubMed  Google Scholar 

  64. Kalsbeek A, Buijs RM, Van Heerikhuize JJ, Arts M, Van der Woude TP (1992) Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Res 580(1–2):62–67

    Article  CAS  PubMed  Google Scholar 

  65. Migeon CJ, Tyler FH, Mahoney JP, Florentin AA, Castle H, Bliss EL, Samuels LT (1956) The diurnal variation of plasma levels and urinary excretion of 17-hydroxycorticosteroids in normal subjects, night workers and blind subjects. J Clin Endocrinol Metab 16(5):622–633

    Article  CAS  PubMed  Google Scholar 

  66. Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong H-K, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci 101(15):5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL (2005) Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci 102(8):3111–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zylka MJ, Shearman LP, Weaver DR, Reppert SM (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20(6):1103–1110

    Article  CAS  PubMed  Google Scholar 

  69. Lee C, Etchegaray J-P, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107(7):855–867

    Article  CAS  PubMed  Google Scholar 

  70. Field MD, Maywood ES, O’Brien JA, Weaver DR, Reppert SM, Hastings MH (2000) Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25(2):437–447

    Article  CAS  PubMed  Google Scholar 

  71. Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang R-P, Todo T, Wei Y-F, Sancar A (1996) Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35(44):13871–13877

    Article  CAS  PubMed  Google Scholar 

  72. Todo T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, Nomura T, Ikenaga M (1996) Similarity among the Drosophila (6-4) photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science 272(5258):109–112

    Article  CAS  PubMed  Google Scholar 

  73. Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci 95(11):6097–6102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lucas RJ, Freedman MS, Muñoz M, Garcia-Fernández J-M, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284(5413):505–507

    Article  CAS  PubMed  Google Scholar 

  75. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20(2):600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peschel N, Chen KF, Szabo G, Stanewsky R (2009) Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr Biol 19(3):241–247

    Article  CAS  PubMed  Google Scholar 

  77. Emery P, So WV, Kaneko M, Hall JC, Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5):669–679

    Article  CAS  PubMed  Google Scholar 

  78. Emery P, Stanewsky R, Hall JC, Rosbash M (2000) Drosophila cryptochromes: a unique circadian-rhythm photoreceptor. Nature 404(6777):456

    Article  CAS  PubMed  Google Scholar 

  79. Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M (2000) Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26(2):493–504

    Article  CAS  PubMed  Google Scholar 

  80. Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95(5):681–692. https://doi.org/10.1016/S0092-8674(00)81638-4

    Article  CAS  PubMed  Google Scholar 

  81. Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278(5343):1632–1635

    Article  CAS  PubMed  Google Scholar 

  82. Giebultowicz JM, Hege DM (1997) Circadian clock in Malpighian tubules. Nature 386(6626):664

    Article  CAS  PubMed  Google Scholar 

  83. Buhr ED, Yoo S-H, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330(6002):379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sehadova H, Glaser FT, Gentile C, Simoni A, Giesecke A, Albert JT, Stanewsky R (2009) Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 64(2):251–266

    Article  CAS  PubMed  Google Scholar 

  85. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6(3):269–278

    Article  CAS  PubMed  Google Scholar 

  87. Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci 106(50):21453–21458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stevenson NR, Ferrigni F, Parnicky K, Day S, Fierstein JS (1975) Effect of changes in feeding schedule on the diurnal rhythms and daily activity levels of intestinal brush border enzymes and transport systems. Biochim Biophys Acta (BBA) Biomembr 406(1):131–145

    Article  CAS  Google Scholar 

  89. Oishi K, Shiota M, Sakamoto K, Kasamatsu M, Ishida N (2004) Feeding is not a more potent Zeitgeber than the light-dark cycle in Drosophila. NeuroReport 15(4):739–743

    Article  PubMed  Google Scholar 

  90. Xu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A (2011) The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 13(6):639–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu K, Zheng X, Sehgal A (2008) Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8(4):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    Article  CAS  PubMed  Google Scholar 

  93. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488):2344–2347

    Article  CAS  PubMed  Google Scholar 

  94. Yagita K, Okamura H (2000) Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 465(1):79–82

    Article  CAS  PubMed  Google Scholar 

  95. Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, Maywood ES, Stangherlin A, Chesham JE, Hayter EA, Rosenbrier-Ribeiro L, Newham P, Clevers H, Bechtold DA, O’Neill JS (2019) Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177(4):896.e820–909.e820

    Article  CAS  Google Scholar 

  96. Gill S, Le HD, Melkani GC, Panda S (2015) Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347(6227):1265–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Leblond C, Stevens C (1948) The constant renewal of the intestinal epithelium in the albino rat. Anat Rec 100(3):357–377

    Article  CAS  PubMed  Google Scholar 

  98. von Bertalanffy L (1960) Principles and theory of growth. In: Nowinski WW (ed) Fundamental aspects of normal and malignant growth, vol 493. Elsevier, Amsterdam, pp 137–259

    Google Scholar 

  99. Van Der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    Article  CAS  PubMed  Google Scholar 

  100. Casali A, Batlle E (2009) Intestinal stem cells in mammals and Drosophila. Cell Stem Cell 4(2):124–127

    Article  CAS  PubMed  Google Scholar 

  101. Jiang H, Tian A, Jiang J (2016) Intestinal stem cell response to injury: lessons from Drosophila. Cell Mol Life Sci 73(17):3337–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. De Navascués J, Perdigoto CN, Bian Y, Schneider MH, Bardin AJ, Martínez-Arias A, Simons BD (2012) Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells. EMBO J 31(11):2473–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Goulas S, Conder R, Knoblich JA (2012) The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 11(4):529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315(5814):988–992

    Article  CAS  PubMed  Google Scholar 

  105. Biteau B, Jasper H (2014) Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila. Cell Rep 7(6):1867–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeng X, Hou SX (2015) Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development 142(4):644–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Doupé DP, Marshall OJ, Dayton H, Brand AH, Perrimon N (2018) Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proc Natl Acad Sci 115(48):12218–12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tian H, Biehs B, Chiu C, Siebel CW, Wu Y, Costa M, de Sauvage FJ, Klein OD (2015) Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep 11(1):33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li N, Yousefi M, Nakauka-Ddamba A, Jain R, Tobias J, Epstein JA, Jensen ST, Lengner CJ (2014) Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Rep 3(5):876–891

    Article  CAS  Google Scholar 

  110. Liu X, Lu R, Wu S, Sun J (2010) Salmonella regulation of intestinal stem cells through the Wnt/β-catenin pathway. FEBS Lett 584(5):911–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jiang H, Edgar BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136(3):483–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137(7):1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lin KK, Kumar V, Geyfman M, Chudova D, Ihler AT, Smyth P, Paus R, Takahashi JS, Andersen B (2009) Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet 5(7):e1000573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Biteau B, Jasper H (2011) EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138(6):1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guo Z, Driver I, Ohlstein B (2013) Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis. J Cell Biol 201(6):945–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dutta D, Dobson AJ, Houtz PL, Gläßer C, Revah J, Korzelius J, Patel PH, Edgar BA, Buchon N (2015) Regional cell-specific transcriptome mapping reveals regulatory complexity in the adult Drosophila midgut. Cell Rep 12(2):346–358

    Article  CAS  PubMed  Google Scholar 

  117. Zhou J, Florescu S, Boettcher A-L, Luo L, Dutta D, Kerr G, Cai Y, Edgar BA, Boutros M (2015) Dpp/Gbb signaling is required for normal intestinal regeneration during infection. Dev Biol 399(2):189–203

    Article  CAS  PubMed  Google Scholar 

  118. Perochon J, Carroll L, Cordero J (2018) Wnt signalling in intestinal stem cells: lessons from mice and flies. Genes 9(3):138

    Article  CAS  PubMed Central  Google Scholar 

  119. Cordero JB, Stefanatos RK, Myant K, Vidal M, Sansom OJ (2012) Non-autonomous crosstalk between the Jak/Stat and Egfr pathways mediates Apc1-driven intestinal stem cell hyperplasia in the Drosophila adult midgut. Development 139(24):4524–4535

    Article  CAS  PubMed  Google Scholar 

  120. Cordero JB, Stefanatos RK, Scopelliti A, Vidal M, Sansom OJ (2012) Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila. EMBO J 31(19):3901–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tian A, Jiang J (2014) Intestinal epithelium-derived BMP controls stem cell self-renewal in Drosophila adult midgut. Elife 3:e01857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tian A, Wang B, Jiang J (2017) Injury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during Drosophila midgut regeneration. Proc Natl Acad Sci 114(13):E2699–E2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Beumer J, Clevers H (2016) Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 143(20):3639–3649

    Article  CAS  PubMed  Google Scholar 

  124. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, Baffour-Awuah NY, Ambruzs DM, Fogli LK, Algra S, Breault DT (2011) Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci 108(1):179–184

    Article  PubMed  Google Scholar 

  126. Takeda N, Jain R, LeBoeuf MR, Padmanabhan A, Wang Q, Li L, Lu MM, Millar SE, Epstein JA (2013) Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development 140(8):1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham JN, Juchheim A, Prasad N, Levy SE, Guo Y, Shyr Y, Aronow BJ, Haigis KM, Franklin JL, Coffey RJ (2012) The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149(1):146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J, Ouladan S, Fink M, Barutcu S, Trcka D, Shen J, Chan K, Wrana JL, Gregorieff A (2019) Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569(7754):121

    Article  CAS  PubMed  Google Scholar 

  129. Muñoz J, Stange DE, Schepers AG, Van De Wetering M, Koo BK, Itzkovitz S, Volckmann R, Kung KS, Koster J, Radulescu S, Myant K, Versteeg R, Sansom OJ, van Es J, Barker N, van Oudenaarden A, Mohammed S, Heck AJ, Clevers H (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+ 4’cell markers. EMBO J 31(14):3079–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003

    Article  CAS  PubMed  Google Scholar 

  131. Van der Flier LG, Haegebarth A, Stange DE, Van de Wetering M, Clevers H (2009) OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137(1):15–17

    Article  PubMed  Google Scholar 

  132. Schuijers J, Junker JP, Mokry M, Hatzis P, Koo B-K, Sasselli V, Van Der Flier LG, Cuppen E, van Oudenaarden A, Clevers H (2015) Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell 16(2):158–170

    Article  CAS  PubMed  Google Scholar 

  133. van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, Begthel H, van den Born M, Guryev V, Oving I, van Es J, Barker N, Peters PJ, van de Wetering M, Clevers H (2009) Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136(5):903–912

    Article  CAS  PubMed  Google Scholar 

  134. Cheng H, Leblond C (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141(4):537–561

    Article  CAS  PubMed  Google Scholar 

  135. Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat 160(1):77–91

    Article  CAS  PubMed  Google Scholar 

  136. Sládek M, Rybová M, Jindráková Z, Zemanová Z, Polidarová L, Mrnka L, O’Neill J, Pácha J, Sumová A (2007) Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133(4):1240–1249

    Article  CAS  PubMed  Google Scholar 

  137. Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133(4):1250–1260

    Article  CAS  PubMed  Google Scholar 

  138. Hoogerwerf WA, Sinha M, Conesa A, Luxon BA, Shahinian VB, Cornélissen G, Halberg F, Bostwick J, Timm J, Cassone VM (2008) Transcriptional profiling of mRNA expression in the mouse distal colon. Gastroenterology 135(6):2019–2029

    Article  CAS  PubMed  Google Scholar 

  139. Weger BD, Gobet C, Yeung J, Martin E, Jimenez S, Betrisey B, Foata F, Berger B, Balvay A, Foussier A, Charpagne A, Boizet-Bonhoure B, Chou CJ, Naef F, Gachon F (2019) The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab 29(2):362.e368–382.e368

    Article  CAS  Google Scholar 

  140. Tognini P, Murakami M, Liu Y, Eckel-Mahan KL, Newman JC, Verdin E, Baldi P, Sassone-Corsi P (2017) Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab 26(3):523.e525–538.e525

    Article  CAS  Google Scholar 

  141. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20(14):1868–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Leibach FH, Ganapathy V (1996) Peptide transporters in the intestine and the kidney. Annu Rev Nutr 16(1):99–119

    Article  CAS  PubMed  Google Scholar 

  143. Pan X, Hussain MM (2009) Clock is important for food and circadian regulation of macronutrient absorption in mice. J Lipid Res 50(9):1800–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pan X, Terada T, Irie M, Saito H, Inui K-I (2002) Diurnal rhythm of H+-peptide cotransporter in rat small intestine. Am J Physiol Gastrointest Liver Physiol 283(1):G57–G64

    Article  CAS  PubMed  Google Scholar 

  145. Rhoads DB, Rosenbaum DH, Unsal H, Isselbacher KJ, Levitsky LL (1998) Circadian periodicity of intestinal Na+/glucose cotransporter 1 mRNA levels is transcriptionally regulated. J Biol Chem 273(16):9510–9516

    Article  CAS  PubMed  Google Scholar 

  146. Saito M, Murakami E, Nishida T, Fujisawa Y, Suda M (1975) Circadian rhythms in digestive enzymes in the small intestine of rats: I. Patterns of the rhythms in various regions of the small intestine. J Biochem 78(3):475–480

    Article  CAS  PubMed  Google Scholar 

  147. Saito M, Sato Y, Suda M (1978) Circadian rhythm and dietary response of disaccharidase activities in isolated rat jejunum. Gastroenterology 75(5):828–831

    Article  CAS  PubMed  Google Scholar 

  148. Scheving LA (2000) Biological clocks and the digestive system. Gastroenterology 119(2):536–549

    Article  CAS  PubMed  Google Scholar 

  149. Pacha J, Sumova A (2013) Circadian regulation of epithelial functions in the intestine. Acta Physiol 208(1):11–24

    Article  CAS  Google Scholar 

  150. Hussain MM (2014) Regulation of intestinal lipid absorption by clock genes. Annu Rev Nutr 34:357–375

    Article  CAS  PubMed  Google Scholar 

  151. Potten CS, Al-Barwari SE, Hume WJ, Searle J (1977) Circadian rhythms of presumptive stem cells in three different epithelia of the mouse. Cell Prolif 10(6):557–568

    Article  CAS  Google Scholar 

  152. Lucas D, Battista M, Shi PA, Isola L, Frenette PS (2008) Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3(4):364–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442

    Article  CAS  PubMed  Google Scholar 

  154. Janich P, Pascual G, Merlos-Suárez A, Batlle E, Ripperger J, Albrecht U, Cheng H-YM, Obrietan K, Di Croce L, Benitah SA (2011) The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480(7376):209

    Article  CAS  PubMed  Google Scholar 

  155. Janich P, Toufighi K, Solanas G, Luis NM, Minkwitz S, Serrano L, Lehner B, Benitah SA (2013) Human epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell 13(6):745–753

    Article  CAS  PubMed  Google Scholar 

  156. Tsinkalovsky O, Rosenlund B, Laerum OD, Eiken HG (2005) Clock gene expression in purified mouse hematopoietic stem cells. Exp Hematol 33(1):100–107

    Article  CAS  PubMed  Google Scholar 

  157. Puram RV, Kowalczyk MS, de Boer CG, Schneider RK, Miller PG, McConkey M, Tothova Z, Tejero H, Heckl D, Järås M, Chen MC, Li H, Tamayo A, Cowley GS, Rozenblatt-Rosen O, Al-Shahrour F, Regev A, Ebert BL (2016) Core circadian clock genes regulate leukemia stem cells in AML. Cell 165(2):303–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang J, Morita Y, Han B, Niemann S, Löffler B, Rudolph KL (2016) Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing. Nat Cell Biol 18(5):480

    Article  CAS  PubMed  Google Scholar 

  159. Plikus MV, Vollmers C, de la Cruz D, Chaix A, Ramos R, Panda S, Chuong C-M (2013) Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc Natl Acad Sci 110(23):E2106–E2115

    Article  PubMed  PubMed Central  Google Scholar 

  160. Spörl F, Korge S, Jürchott K, Wunderskirchner M, Schellenberg K, Heins S, Specht A, Stoll C, Klemz R, Maier B, Wenck H, Schrader A, Kunz D, Blatt T, Kramer A (2012) Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. Proc Natl Acad Sci 109(27):10903–10908

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE, Bray LK, Thomas JM, Dunn K, Blaikley J, O’Neill JS (2017) Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci Transl Med 9(415):eaal2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Paatela E, Munson D, Kikyo N (2019) Circadian regulation in tissue regeneration. Int J Mol Sci 20(9):2263

    Article  CAS  PubMed Central  Google Scholar 

  163. Dierickx P, Van Laake LW, Geijsen N (2018) Circadian clocks: from stem cells to tissue homeostasis and regeneration. EMBO Rep 19(1):18–28

    Article  CAS  PubMed  Google Scholar 

  164. Weger M, Diotel N, Dorsemans A-C, Dickmeis T, Weger BD (2017) Stem cells and the circadian clock. Dev Biol 431(2):111–123

    Article  CAS  PubMed  Google Scholar 

  165. Plikus MV, Van Spyk EN, Pham K, Geyfman M, Kumar V, Takahashi JS, Andersen B (2015) The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity. J Biol Rhythms 30(3):163–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brown SA (2014) Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development 141(16):3105–3111

    Article  CAS  PubMed  Google Scholar 

  167. Janich P, Meng Q-J, Benitah SA (2014) Circadian control of tissue homeostasis and adult stem cells. Curr Opin Cell Biol 31:8–15

    Article  CAS  PubMed  Google Scholar 

  168. Yagita K, Horie K, Koinuma S, Nakamura W, Yamanaka I, Urasaki A, Shigeyoshi Y, Kawakami K, Shimada S, Takeda J, Uchiyama Y (2010) Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc Natl Acad Sci 107(8):3846–3851

    Article  PubMed  PubMed Central  Google Scholar 

  169. Umemura Y, Koike N, Ohashi M, Tsuchiya Y, Meng QJ, Minami Y, Hara M, Hisatomi M, Yagita K (2017) Involvement of posttranscriptional regulation of Clock in the emergence of circadian clock oscillation during mouse development. Proc Natl Acad Sci 114(36):E7479–E7488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Solanas G, Peixoto FO, Perdiguero E, Jardí M, Ruiz-Bonilla V, Datta D, Symeonidi A, Castellanos A, Welz P-S, Caballero JM, Sassone-Corsi P, Muñoz-Cánoves P, Benitah SA (2017) Aged stem cells reprogram their daily rhythmic functions to adapt to stress. Cell 170(4):678.e620–692.e620

    Article  CAS  Google Scholar 

  171. Sigdestad C, Bauman J, Lesher S (1969) Diurnal fluctuations in the number of cells in mitosis and DNA synthesis in the jejunum of the mouse. Exp Cell Res 58(1):159–162

    Article  CAS  PubMed  Google Scholar 

  172. Bishehsari F, Levi F, Turek FW, Keshavarzian A (2016) Circadian rhythms in gastrointestinal health and diseases. Gastroenterology 151(3):e1–e5

    Article  PubMed  Google Scholar 

  173. Bertalanffy FD (1960) Mitotic rates and renewal times of the digestive tract epithelia in the rat. Cells Tissues Organs 40(2–3):130–148

    Article  CAS  Google Scholar 

  174. Pilgrim C, Erb W, Maurer W (1963) Diurnal fluctuations in the numbers of DNA synthesizing nuclei in various mouse tissues. Nature 199(4896):863

    Article  CAS  PubMed  Google Scholar 

  175. e Melo FdS, de Sauvage FJ (2018) Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell 24(1):54–64

    Article  CAS  Google Scholar 

  176. Borgs L, Beukelaers P, Vandenbosch R, Belachew S, Nguyen L, Malgrange B (2009) Cell “circadian” cycle: new role for mammalian core clock genes. Cell Cycle 8(6):832–837

    Article  CAS  PubMed  Google Scholar 

  177. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259

    Article  CAS  PubMed  Google Scholar 

  178. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705

    Article  CAS  PubMed  Google Scholar 

  179. Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F (2014) Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 10(7):739

    Article  PubMed  PubMed Central  Google Scholar 

  180. Feillet C, Krusche P, Tamanini F, Janssens RC, Downey MJ, Martin P, Teboul M, Saito S, Lévi FA, Bretschneider T, van Der Horst GT, Delaunay F, Rand DA (2014) Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci 111(27):9828–9833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yeom M, Pendergast JS, Ohmiya Y, Yamazaki S (2010) Circadian-independent cell mitosis in immortalized fibroblasts. Proc Natl Acad Sci 107(21):9665–9670

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gréchez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F (2008) The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 283(8):4535–4542

    Article  CAS  PubMed  Google Scholar 

  183. Kowalska E, Ripperger JA, Hoegger DC, Bruegger P, Buch T, Birchler T, Mueller A, Albrecht U, Contaldo C, Brown SA (2013) NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci 110(5):1592–1599

    Article  PubMed  Google Scholar 

  184. Polidarová L, Soták M, Sládek M, Pácha J, Sumová A, Polidarová L, Soták M, Sládek M, Pácha J, Sumová A (2009) Temporal gradient in the clock gene and cell-cycle checkpoint kinase Wee1 expression along the gut. Chronobiol Int 26(4):607–620

    Article  CAS  PubMed  Google Scholar 

  185. Sancar A, Lindsey-Boltz LA, Kang T-H, Reardon JT, Lee JH, Ozturk N (2010) Circadian clock control of the cellular response to DNA damage. FEBS Lett 584(12):2618–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sancar A, Lindsey-Boltz LA, Gaddameedhi S, Selby CP, Ye R, Chiou Y-Y, Kemp MG, Hu J, Lee JH, Ozturk N (2014) Circadian clock, cancer, and chemotherapy. Biochemistry 54(2):110–123

    Article  CAS  PubMed  Google Scholar 

  187. Ünsal-Kaçmaz K, Mullen TE, Kaufmann WK, Sancar A (2005) Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25(8):3109–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382

    Article  CAS  PubMed  Google Scholar 

  189. Im J-S, Jung B-H, Kim S-E, Lee K-H, Lee J-K (2010) Per3, a circadian gene, is required for Chk2 activation in human cells. FEBS Lett 584(23):4731–4734

    Article  CAS  PubMed  Google Scholar 

  190. Geyfman M, Kumar V, Liu Q, Ruiz R, Gordon W, Espitia F, Cam E, Millar SE, Smyth P, Ihler A, Takahashi JS, Andersen B (2012) Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci 109(29):11758–11763

    Article  PubMed  PubMed Central  Google Scholar 

  191. Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A (2011) Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci 108(46):18790–18795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kang T-H, Lindsey-Boltz LA, Reardon JT, Sancar A (2010) Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc Natl Acad Sci 107(11):4890–4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kang T-H, Reardon JT, Kemp M, Sancar A (2009) Circadian oscillation of nucleotide excision repair in mammalian brain. Proc Natl Acad Sci 106(8):2864–2867

    Article  PubMed  PubMed Central  Google Scholar 

  194. Clevers H, Loh KM, Nusse R (2014) An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346(6205):1248012

    Article  CAS  PubMed  Google Scholar 

  195. Bhanot P, Brink M, Samos CH, Hsieh J-C, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382(6588):225

    Article  CAS  PubMed  Google Scholar 

  196. Wehrli M, Dougan ST, Caldwell K, O’Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S (2000) arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407(6803):527

    Article  CAS  PubMed  Google Scholar 

  197. Kishida S, Yamamoto H, Hino S-i, Ikeda S, Kishida M, Kikuchi A (1999) DIX domains of Dvl and Axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol Cell Biol 19(6):4414–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yan KS, Gevaert O, Zheng GX, Anchang B, Probert CS, Larkin KA, Davies PS, Cheng Z-f, Kaddis JS, Han A, Roelf K, Calderon RI, Cynn E, Hu X, Mandleywala K, Wihelmy J, Grimes SM, Corney DC, Boutet SC, Terry JM, Belgrader P, Ziraldo SB, Mikkelsen TS, Wang F, von Furstenberg RJ, Smith NR, Chandrakesan P, May R, Chrissy MAS, Jain R, Cartwright CA, Niland JC, Hong Y-K, Carrington J, Breault DT, Epstein JA, Houchen CW, Lynch JP, Martin MG, Plevritis SK, Curtis C, Ji HP, Li L, Henning SJ, Wong MH, Kuo CJ (2017) Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell 21(1):78.e76–90.e76

    Article  CAS  Google Scholar 

  199. Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, Kuo CJ (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15(6):701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sato T, Vries RG, Snippert HJ, Van De Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459(7244):262

    Article  CAS  PubMed  Google Scholar 

  201. Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, Tóth B, Kondo A, Massassa EE, Itzkovitz S, Kaestner KH (2018) Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557(7704):242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gregorieff A, Pinto D, Begthel H, Destrée O, Kielman M, Clevers H (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129(2):626–638

    Article  CAS  PubMed  Google Scholar 

  203. Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, de Punder K, Angers S, Peters PJ, Maurice MM, Clevers H (2016) Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530(7590):340

    Article  CAS  PubMed  Google Scholar 

  204. San Roman AK, Jayewickreme CD, Murtaugh LC, Shivdasani RA (2014) Wnt secretion from epithelial cells and subepithelial myofibroblasts is not required in the mouse intestinal stem cell niche in vivo. Stem Cell Rep 2(2):127–134

    Article  CAS  Google Scholar 

  205. Sato T, Van Es JH, Snippert HJ, Stange DE, Vries RG, Van Den Born M, Barker N, Shroyer NF, Van De Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415

    Article  CAS  PubMed  Google Scholar 

  206. Lin G, Xu N, Xi R (2008) Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455(7216):1119

    Article  CAS  PubMed  Google Scholar 

  207. Tian A, Benchabane H, Wang Z, Ahmed Y (2016) Regulation of stem cell proliferation and cell fate specification by wingless/Wnt signaling gradients enriched at adult intestinal compartment boundaries. PLoS Genet 12(2):e1005822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chatterjee S, Yin H, Li W, Lee J, Yechoor VK, Ma K (2019) The nuclear receptor and clock repressor Rev-erbα suppresses myogenesis. Sci Rep 9(1):4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chatterjee S, Nam D, Guo B, Kim JM, Winnier GE, Lee J, Berdeaux R, Yechoor VK, Ma K (2013) Brain and muscle Arnt-like 1 is a key regulator of myogenesis. J Cell Sci 126(10):2213–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. He Y, Lin F, Chen Y, Tan Z, Bai D, Zhao Q (2014) Overexpression of the circadian clock gene rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis. Stem Cells Dev 24(10):1194–1204

    Article  CAS  PubMed Central  Google Scholar 

  211. Guo B, Chatterjee S, Li L, Kim JM, Lee J, Yechoor VK, Minze LJ, Hsueh W, Ma K (2012) The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J 26(8):3453–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wood PA, Yang X, Taber A, Oh E-Y, Ansell C, Ayers SE, Al-Assaad Z, Carnevale K, Berger FG, Peña MMO, Hrushesky WJ (2008) Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res 6(11):1786–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yang X, Wood PA, Ansell CM, Ohmori M, Oh E-Y, Xiong Y, Berger FG, Peña MMO, Hrushesky WJ (2008) β-catenin induces β-TrCP-mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/+ mice. J Biochem 145(3):289–297

    Article  CAS  PubMed  Google Scholar 

  214. Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, Cole AM, Gregorieff A, de Alboran IM, Clevers H, Clarke AR (2006) Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol 26(22):8418–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50

    Article  CAS  PubMed  Google Scholar 

  216. Repouskou A, Sourlingas TG, Sekeri-Pataryas KE, Prombona A (2010) The circadian expression of c-MYC is modulated by the histone deacetylase inhibitor trichostatin A in synchronized murine neuroblastoma cells. Chronobiol Int 27(4):722–741

    Article  CAS  PubMed  Google Scholar 

  217. Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, Diskin SJ, Bellovin DI, Simon MC, Rathmell JC, Lazar MA, Maris JM, Felsher DW, Hogenesch JB, Welijie AM, Dang CV (2015) MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab 22(6):1009–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Repouskou A (1859) Prombona A (2016) c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level. Biochim Biophys Acta (BBA) Gene Regul Mech 4:541–552

    Google Scholar 

  219. Shostak A, Ruppert B, Ha N, Bruns P, Toprak UH, Project IM-S, Eils R, Schlesner M, Diernfellner A, Brunner M (2016) MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation. Nat Commun 7:11807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Van De Wetering M, Sancho E, Verweij C, De Lau W, Oving I, Hurlstone A, Van Der Horn K, Batlle E, Coudreuse D, Haramis A-P, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250

    Article  PubMed  Google Scholar 

  221. Matsu-ura T, Moore SR, Hong CI (2018) WNT takes two to tango: molecular links between the circadian clock and the cell cycle in adult stem cells. J Biol Rhythms 33(1):5–14

    Article  CAS  PubMed  Google Scholar 

  222. Hirota T, Lewis WG, Liu AC, Lee JW, Schultz PG, Kay SA (2008) A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β. Proc Natl Acad Sci 105(52):20746–20751

    Article  PubMed  PubMed Central  Google Scholar 

  223. Iitaka C, Miyazaki K, Akaike T, Ishida N (2005) A role for glycogen synthase kinase-3β in the mammalian circadian clock. J Biol Chem 280(33):29397–29402

    Article  CAS  PubMed  Google Scholar 

  224. Hamilton E (1979) Diurnal variation in proliferative compartments and their relation to cryptogenic cells in the mouse colon. Cell Prolif 12(1):91–100

    Article  CAS  Google Scholar 

  225. Al-Nafussi A, Wright N (1982) Circadian rhythm in the rate of cellular proliferation and in the size of the functional compartment of mouse jejunal epithelium. Virchows Archiv B 40(1):71

    Article  CAS  Google Scholar 

  226. Panganiban G, Reuter R, Scott M, Hoffmann F (1990) A Drosophila growth factor homolog, decapentaplegic, regulates homeotic gene expression within and across germ layers during midgut morphogenesis. Development 110(4):1041–1050

    CAS  PubMed  Google Scholar 

  227. Bitgood MJ, McMahon AP (1995) HedgehogandBmpGenes are coexpressed at many diverse sites of cell–cell interaction in the mouse embryo. Dev Biol 172(1):126–138

    Article  CAS  PubMed  Google Scholar 

  228. Batts LE, Polk DB, Dubois RN, Kulessa H (2006) Bmp signaling is required for intestinal growth and morphogenesis. Dev Dyn Off Publ Am Assoc Anat 235(6):1563–1570

    CAS  Google Scholar 

  229. Shyer AE, Huycke TR, Lee C, Mahadevan L, Tabin CJ (2015) Bending gradients: how the intestinal stem cell gets its home. Cell 161(3):569–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Shyer AE, Tallinen T, Nerurkar NL, Wei Z, Gil ES, Kaplan DL, Tabin CJ, Mahadevan L (2013) Villification: how the gut gets its villi. Science 342(6155):212–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, Velculescu VE, Traverso G, Vogelstein B (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28(2):184

    Article  CAS  PubMed  Google Scholar 

  232. Haramis A-PG, Begthel H, Van Den Born M, Van Es J, Jonkheer S, Offerhaus GJA, Clevers H (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303(5664):1684–1686

    Article  CAS  PubMed  Google Scholar 

  233. He XC, Zhang J, Tong W-G, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Yuji M, Li L (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat Genet 36(10):1117

    Article  CAS  PubMed  Google Scholar 

  234. Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, Leung SY, Chen X (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci 104(39):15418–15423

    Article  PubMed  PubMed Central  Google Scholar 

  235. Li H, Qi Y, Jasper H (2013) Dpp signaling determines regional stem cell identity in the regenerating adult Drosophila gastrointestinal tract. Cell reports 4(1):10–18

    Article  CAS  PubMed  Google Scholar 

  236. Yeung C-YC, Gossan N, Lu Y, Hughes A, Hensman JJ, Bayer ML, Kjær M, Kadler KE, Meng Q-J (2014) Gremlin-2 is a BMP antagonist that is regulated by the circadian clock. Sci Rep 4:5183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Nam D, Guo B, Chatterjee S, Chen MH, Nelson D, Yechoor VK, Ma K (2015) The adipocyte clock controls brown adipogenesis through the TGF-β and BMP signaling pathways. J Cell Sci 128(9):1835–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8(1):152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Park J-S, Kim Y-S, Yoo M-A (2009) The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging 1(7):637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Jiang H, Grenley MO, Bravo M-J, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8(1):84–95

    Article  CAS  PubMed  Google Scholar 

  241. Goldsmith CS, Bell-Pedersen D (2013) Diverse roles for MAPK signaling in circadian clocks. Advances in genetics, vol 84. Elsevier, Amsterdam, pp 1–39

    Google Scholar 

  242. Neilsen BK, Frodyma DE, McCall JL, Fisher KW, Lewis RE (2019) ERK-mediated TIMELESS expression suppresses G2/M arrest in colon cancer cells. PLoS One 14(1):e0209224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zhang F, Sun H, Zhang S, Yang X, Zhang G, Su T (2017) Overexpression of PER3 inhibits self-renewal capability and chemoresistance of colorectal cancer stem-like cells via inhibition of notch and β-catenin signaling. Oncol Res Featur Preclin Clin Cancer Ther 25(5):709–719

    Google Scholar 

  244. Yoshida D, Aoki N, Tanaka M, Aoyama S, Shibata S (2015) The circadian clock controls fluctuations of colonic cell proliferation during the light/dark cycle via feeding behavior in mice. Chronobiol Int 32(8):1145–1155

    Article  CAS  PubMed  Google Scholar 

  245. Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Choi NH, Lucchetta E, Ohlstein B (2011) Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proc Natl Acad Sci 108(46):18702–18707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. O’Brien LE, Soliman SS, Li X, Bilder D (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147(3):603–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, Neielsen GP, Mino-Kenudson M, Zukerberg LR, Bhan AK, Deshpande V, Sabatini DM (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486(7404):490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Igarashi M, Guarente L (2016) mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166(2):436–450

    Article  CAS  PubMed  Google Scholar 

  250. Richmond CA, Shah MS, Deary LT, Trotier DC, Thomas H, Ambruzs DM, Jiang L, Whiles BB, Rickner HD, Montgomery RK, Tovaglieri A, Carlone DL, Breault DT (2015) Dormant intestinal stem cells are regulated by PTEN and nutritional status. Cell Rep 13(11):2403–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A, Güttler T, Davis F, Asara JM, Sahin M (2015) The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161(5):1138–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23(19):2333–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5(2):200–211

    Article  CAS  PubMed  Google Scholar 

  254. Beebe K, Lee W-C, Micchelli CA (2010) JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. Dev Biol 338(1):28–37. https://doi.org/10.1016/j.ydbio.2009.10.045

    Article  CAS  PubMed  Google Scholar 

  255. Jeffery V, Goldson AJ, Dainty JR, Chieppa M, Sobolewski A (2017) IL-6 signaling regulates small intestinal crypt homeostasis. J Immunol 199(1):304–311

    Article  CAS  PubMed  Google Scholar 

  256. Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, Ivanov JA, Fu Y-Y, Takashima S, Gua G, Martin ML, O’Rourke KP, Lo Y-H, Mokry M, Romera-Hernandez M, Cupedo T, Dow LE, Nieuwenhuis EE, Shroyer NF, Liu C, Kolesnick R, van den Brink MR, Hanash AM (2015) Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528(7583):560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Oshima H, Kok S-Y, Nakayama M, Murakami K, Voon DC-C, Kimura T, Oshima M (2018) Stat3 is indispensable for damage-induced crypt regeneration but not for Wnt-driven intestinal tumorigenesis. FASEB J 33(2):1873–1886

    Article  PubMed  PubMed Central  Google Scholar 

  258. Arjona A, Sarkar DK (2005) Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol 174(12):7618–7624

    Article  CAS  PubMed  Google Scholar 

  259. Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang J-E, Zhang D, Hashimoto D, Merad M, Frenette PS (2012) Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37(2):290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Halberg F (1960) Temporal coordination of physiologic function. In: Cold Spring Harbor symposia on quantitative biology,1960, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 289-310

  261. Shackelford PG, Feigin RD (1973) Periodicity of susceptibility to pneumococcal infection: influence of light and adrenocortical secretions. Science 182(4109):285–287

    Article  CAS  PubMed  Google Scholar 

  262. Stone EF, Fulton BO, Ayres JS, Pham LN, Ziauddin J, Shirasu-Hiza MM (2012) The circadian clock protein timeless regulates phagocytosis of bacteria in Drosophila. PLoS Pathog 8(1):e1002445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Allen VW, O’Connor RM, Ulgherait M, Zhou CG, Stone EF, Hill VM, Murphy KR, Canman JC, William WJ, Shirasu-Hiza MM (2016) Period-regulated feeding behavior and TOR signaling modulate survival of infection. Curr Biol 26(2):184–194

    Article  CAS  PubMed  Google Scholar 

  264. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341(6153):1483–1488

    Article  CAS  PubMed  Google Scholar 

  265. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk H-D, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci 106(50):21407–21412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Hayashi M, Shimba S, Tezuka M (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30(4):621–626

    Article  CAS  PubMed  Google Scholar 

  267. Arjona A, Sarkar DK (2006) Evidence supporting a circadian control of natural killer cell function. Brain Behav Immun 20(5):469–476

    Article  CAS  PubMed  Google Scholar 

  268. Fortier EE, Rooney J, Dardente H, Hardy M-P, Labrecque N, Cermakian N (2011) Circadian variation of the response of T cells to antigen. J Immunol 187(12):6291–6300

    Article  CAS  PubMed  Google Scholar 

  269. Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H, Solbach W (2011) Circadian clocks in mouse and human CD4+ T cells. PLoS One 6(12):e29801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon AS (2012) The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci 109(2):582–587

    Article  PubMed  Google Scholar 

  271. Curtis AM, Bellet MM, Sassone-Corsi P, O’Neill LA (2014) Circadian clock proteins and immunity. Immunity 40(2):178–186

    Article  CAS  PubMed  Google Scholar 

  272. Scheiermann C, Gibbs J, Ince L, Loudon A (2018) Clocking into immunity. Nat Rev Immunol 18(7):423

    Article  CAS  PubMed  Google Scholar 

  273. Man K, Loudon A, Chawla A (2016) Immunity around the clock. Science 354(6315):999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Froy O, Chapnik N (2007) Circadian oscillation of innate immunity components in mouse small intestine. Mol Immunol 44(8):1954–1960

    Article  CAS  PubMed  Google Scholar 

  275. Froy O, Chapnik N, Miskin R (2005) Mouse intestinal cryptdins exhibit circadian oscillation. FASEB J 19(13):1920–1922

    Article  CAS  PubMed  Google Scholar 

  276. Bellet MM, Deriu E, Liu JZ, Grimaldi B, Blaschitz C, Zeller M, Edwards RA, Sahar S, Dandekar S, Baldi P, George MD, Raffatellu M, Sassone-Corsi P (2013) Circadian clock regulates the host response to Salmonella. Proc Natl Acad Sci 110(24):9897–9902

    Article  PubMed  PubMed Central  Google Scholar 

  277. Pourcet B, Zecchin M, Ferri L, Beauchamp J, Sitaula S, Billon C, Delhaye S, Vanhoutte J, Mayeuf-Louchart A, Thorel Q, Hass J, Eeckhoute J, Dombrowicz D, Duhem C, Boulinguiez A, Lancel S, Sebti Y, Burris T, Staels B, Duez H (2018) Nuclear receptor subfamily 1 group D member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology 154(5):1449.e1420–1464.e1420

    Article  CAS  Google Scholar 

  278. Wang S, Lin Y, Yuan X, Li F, Guo L, Wu B (2018) REV-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis. Nat Commun 9(1):4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Mukherji A, Kobiita A, Ye T, Chambon P (2013) Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153(4):812–827

    Article  CAS  PubMed  Google Scholar 

  280. Preuss F, Tang Y, Laposky AD, Arble D, Keshavarzian A, Turek FW (2008) Adverse effects of chronic circadian desynchronization in animals in a “challenging” environment. Am J Physiol Regul Integr Comp Physiol 295(6):R2034–R2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Thaiss CA, Levy M, Korem T, Dohnalová L, Shapiro H, Jaitin DA, David E, Winter DR, Gury-BenAri M, Tatirovsky E, Tuganbaev T, Federici S, Zmora N, Zeevi D, Dori-Bachash M, Pevsner-Rischer M, Kartvelishvily E, Brandis A, Harmelin A, Shibolet O, Halpern Z, Honda K, Amit I, Segal E, Elinav E (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167(6):1495.e1412–1510.e1412

    Article  CAS  Google Scholar 

  282. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Sharpiro H, Halpern Z, Segal E, Elinav E (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159(3):514–529

    Article  CAS  PubMed  Google Scholar 

  283. Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV (2017) The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357(6354):912–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, Pierre JF, Heneghan AF, Nadimpalli A, Hubert N, Zale E, Wang Y, Huang Y, Theriault B, Dinner AR, Musch MW, Kudsk KA, Prendergast BJ, Gilbert JA, Chang EB (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17(5):681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Caruso CC, Lusk SL, Gillespie BW (2004) Relationship of work schedules to gastrointestinal diagnoses, symptoms, and medication use in auto factory workers. Am J Ind Med 46(6):586–598

    Article  PubMed  Google Scholar 

  286. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95(11):825–828

    Article  PubMed  Google Scholar 

  287. Knutsson A, Bøggild H (2010) Gastrointestinal disorders among shift workers. Scand J Work Environ Health 36(2):85–95

    Article  PubMed  Google Scholar 

  288. Sonnenberg A (1990) Occupational distribution of inflammatory bowel disease among German employees. Gut 31(9):1037–1040. https://doi.org/10.1136/gut.31.9.1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang L, Shi Y, Giovannucci E, Speizer F, Schernhammer ES (2018) Rotating night shift work and colorectal cancer risk in the nurses’ health studies. Int J Cancer 143(11):2709–2717. https://doi.org/10.1002/ijc.31655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Mostafaie N, Kállay E, Sauerzapf E, Bonner E, Kriwanek S, Cross HS, Huber KR, Krugluger W (2009) Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog 48(7):642–647

    Article  CAS  PubMed  Google Scholar 

  291. Mazzoccoli G, Panza A, Valvano M, Palumbo O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P, Andriulli A, Piepoli A (2011) Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int 28(10):841–851

    Article  CAS  PubMed  Google Scholar 

  292. Oshima T, Takenoshita S, Akaike M, Kunisaki C, Fujii S, Nozaki A, Numata K, Shiozawa M, Rino Y, Tanaka K, Masuda M, Imada T (2011) Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol Rep 25(5):1439–1446

    Article  CAS  PubMed  Google Scholar 

  293. Battaglin F, Xiu J, Winerip M, Goldberg RM, Philip PA, Seeber A, Puccini A, Tokunaga R, Naseem M, Soni S, McSkane M, Berger MD, Barzi A, Zhang W, Hwang JJ, Shields AF, Marshall J, Korn WM, Lenz H-J (2018) Circadian clock gene PER1 mutations in colorectal cancer (CRC). J Clin Oncol 15:12106

    Article  Google Scholar 

  294. Gu D, Li S, Ben S, Du M, Chu H, Zhang Z, Wang M, Zhang Z-F, Chen J (2018) Circadian clock pathway genes associated with colorectal cancer risk and prognosis. Arch Toxicol 92(8):2681–2689

    Article  CAS  PubMed  Google Scholar 

  295. Yu H, Meng X, Wu J, Pan C, Ying X, Zhou Y, Liu R, Huang W (2013) Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer. PLoS One 8(4):e61679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Masri S, Sassone-Corsi P (2018) The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 24(12):1795–1803. https://doi.org/10.1038/s41591-018-0271-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Sulli G, Lam MTY, Panda S (2019) Interplay between circadian clock and cancer: new frontiers for cancer treatment. Trends cancer 5(8):475–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Chakradeo PS, Keshavarzian A, Singh S, Dera AE, Esteban JPG, Lee AA, Burgess HJ, Fogg L, Swanson GR (2018) Chronotype, social jet lag, sleep debt and food timing in inflammatory bowel disease. Sleep Med 52:188–195

    Article  PubMed  PubMed Central  Google Scholar 

  299. Palmieri O, Mazzoccoli G, Bossa F, Maglietta R, Palumbo O, Ancona N, Corritore G, Latiano T, Martino G, Rubino R, Biscaglia G, Scimeca D, Carella M, Annese V, Andriulli A, Latiano A (2015) Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol Int 32(7):903–916

    Article  CAS  PubMed  Google Scholar 

  300. Liu X, Yu R, Zhu L, Hou X, Zou K (2017) Bidirectional regulation of circadian disturbance and inflammation in inflammatory bowel disease. Inflamm Bowel Dis 23(10):1741–1751

    Article  PubMed  Google Scholar 

  301. Weintraub Y, Cohen S, Chapnik N, Ben-Tov A, Yerushalmy-Feler A, Dotan I, Tauman R, Froy O (2019) Clock gene disruption is an initial manifestation of inflammatory bowel disease. Clin Gastroenterol Hepatol. https://doi.org/10.1016/j.cgh.2019.04.013(in press)

    Article  PubMed  Google Scholar 

  302. Ali T, Choe J, Awab A, Wagener TL, Orr WC (2013) Sleep, immunity and inflammation in gastrointestinal disorders. World J Gastroenterol 19(48):9231–9239. https://doi.org/10.3748/wjg.v19.i48.9231

    Article  PubMed  PubMed Central  Google Scholar 

  303. Sobolewska-Włodarczyk A, Włodarczyk M, Szemraj J, Stec-Michalska K, Fichna J, Wiśniewska-Jarosińska M (2016) Circadian rhythm abnormalities—association with the course of inflammatory bowel disease. Pharmacol Rep 68(4):847–851

    Article  PubMed  Google Scholar 

  304. Swanson GR, Burgess HJ (2017) Sleep and circadian hygiene and inflammatory bowel disease. Gastroenterol Clin 46(4):881–893

    Article  Google Scholar 

  305. Gombert M, Carrasco-Luna J, Pin-Arboledas G, Codoñer-Franch P (2018) The connection of circadian rhythm to inflammatory bowel disease. Trans Res 206:107–118

    Article  Google Scholar 

  306. Antoch MP, Kondratov RV, Takahashi JS (2005) Circadian clock genes as modulators of sensitivity to genotoxic stress. Cell Cycle 4(7):901–907

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Karpowicz lab for their help. This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (#2015-03656), the Canadian Institutes of Health Research (#388014), the Ontario Institute for Regenerative Medicine, and Crohn’s and Colitis Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Karpowicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parasram, K., Karpowicz, P. Time after time: circadian clock regulation of intestinal stem cells. Cell. Mol. Life Sci. 77, 1267–1288 (2020). https://doi.org/10.1007/s00018-019-03323-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03323-x

Keywords

Navigation