Skip to main content

Advertisement

Log in

A signaling network map of Lipoxin (LXA4): an anti-inflammatory molecule

  • Comment
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Lipoxins (LXs) are a class of endogenous bioactive lipid mediators that are involved in the regulation of inflammation. They exert immunomodulatory effects by regulating the behaviour of various immune cells, including neutrophils, macrophages, and T and B cells, by promoting the clearance of apoptotic neutrophils. This helps to dampen inflammation and promote tissue repair. LXs regulate the expression of many inflammatory genes by modulating the levels of transcription factors, such as nuclear factor κB (NF-κB), activator protein-1 (AP-1), nerve growth factor-regulated factor 1A binding protein 1 (NGF), and peroxisome proliferator activated receptor γ (PPAR-γ), which are elevated in various diseases, such as respiratory tract diseases, renal diseases, cancer, neurodegenerative diseases, and viral infections. Lipoxin-mediated signaling is involved in chronic inflammation, cancer, diabetes-associated kidney disease, lung injury, liver injury, endometriosis, respiratory tract diseases, neurodegenerative diseases, chronic cerebral hypoperfusion, and retinal degeneration. In this study, we systematically investigated the intricate network of lipoxin signaling by analyzing the relevant literature. The resulting map comprised 467 molecules categorized as activation/inhibition, enzyme catalysis, gene and protein expression, molecular associations, and translocation events. This map serves as a valuable resource for understanding the complexity of lipoxin signaling and its impact on various cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Romano M, Recchia I, Recchiuti A. Lipoxin receptors. Sci World J. 2007;7:1393–412. https://doi.org/10.1100/tsw.2007.186.

    Article  CAS  Google Scholar 

  2. Ryan A, Godson C. Lipoxins: regulators of resolution. Curr Opin Pharmacol. 2010;10:166–72. https://doi.org/10.1016/j.coph.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  3. Serhan CN, Hamberg M, Samuelsson B. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem Biophys Res Commun. 1984;118:943–9. https://doi.org/10.1016/0006-291x(84)91486-4.

    Article  CAS  PubMed  Google Scholar 

  4. Godson C, Guiry P, Brennan E. Lipoxin mimetics and the resolution of inflammation. Annu Rev Pharmacol Toxicol. 2013;63:429–48. https://doi.org/10.1146/annurev-pharmtox-051921-085407.

    Article  CAS  Google Scholar 

  5. Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids. 2005;73:141–62. https://doi.org/10.1016/j.plefa.2005.05.002.

    Article  CAS  PubMed  Google Scholar 

  6. Chiang N, Serhan CN, Dahlen SE, et al. The lipoxin receptor ALX: potent ligand-specific and stereoselectiveactions in vivo. Pharmacol Rev. 2006;58:463–87. https://doi.org/10.1124/pr.58.3.4.

    Article  CAS  PubMed  Google Scholar 

  7. Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol. 2016;785:144–55. https://doi.org/10.1016/j.ejphar.2015.11.001.

    Article  CAS  PubMed  Google Scholar 

  8. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20:6008. https://doi.org/10.3390/ijms20236008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu T, Mohan M, Brennan EP, et al. Therapeutic potential of Lipoxin A4 in chronic inflammation: focus on cardiometabolic disease. ACS Pharmacol Transl Sci. 2020;3:43–55. https://doi.org/10.1021/acsptsci.9b00097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chandrasekharan JA, Sharma-Walia N. Lipoxins: nature’s way to resolve inflammation. J Inflamm Res. 2015;8:181–92. https://doi.org/10.2147/JIR.S90380.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jaen RI, Sanchez-Garcia S, Fernandez-Velasco M, et al. Resolution-based therapies: the potential of lipoxins to treat human diseases. Front Immunol. 2021;12: 658840. https://doi.org/10.3389/fimmu.2021.658840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramon S, Bancos S, Serhan CN, et al. Lipoxin A4 modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism. Eur J Immunol. 2014;44:357–69. https://doi.org/10.1002/eji.201343316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andrews D, Godson C. Lipoxins and synthetic lipoxin mimetics: therapeutic potential in renal diseases. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866: 158940. https://doi.org/10.1016/j.bbalip.2021.158940.

    Article  CAS  PubMed  Google Scholar 

  14. Prieto P, Cuenca J, Través PG, et al. Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ. 2010;17:1179–88. https://doi.org/10.1038/cdd.2009.220.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, You H, Zhang A, et al. Lipoxin A4 attenuates uric acid-activated, NADPH oxidase-dependent oxidative stress by interfering with translocation of p47phox in human umbilical vein endothelial cells. Exp Ther Med. 2020;20:1682–92. https://doi.org/10.3892/etm.2020.8812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu L, Li HH, Wu Q, et al. Lipoxin A4 activates Nrf2 pathway and ameliorates cell damage in cultured cortical astrocytes exposed to oxygen-glucose deprivation/reperfusion insults. J Mol Neurosci. 2015;56:848–57. https://doi.org/10.1007/s12031-015-0525-6.

    Article  CAS  PubMed  Google Scholar 

  17. Yang S, Zheng Y, Hou X. Lipoxin A4 restores oxidative stress-induced vascular endothelial cell injury and thrombosis-related factor expression by its receptor-mediated activation of Nrf2-HO-1 axis. Cell Signal. 2019;60:146–53. https://doi.org/10.1016/j.cellsig.2019.05.002.

    Article  CAS  PubMed  Google Scholar 

  18. Urbach V, Higgins G, Buchanan P, et al. The role of Lipoxin A4 in cystic fibrosis lung disease. Comput Struct Biotechnol J. 2013;6: e201303018. https://doi.org/10.5936/csbj.201303018.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Higgins G, Ringholz F, Buchanan P, et al. Physiological impact of abnormal lipoxin A4 production on cystic fibrosis airway epithelium and therapeutic potential. Biomed Res Int. 2015;2015: 781087. https://doi.org/10.1155/2015/781087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Higgins G, Fustero Torre C, Tyrrell J, et al. Lipoxin A4 prevents tight junction disruption and delays the colonization of cystic fibrosis bronchial epithelial cells by Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2016;310:L1053–61. https://doi.org/10.1152/ajplung.00368.2015.

    Article  PubMed  Google Scholar 

  21. Higgins G, Buchanan P, Perriere M, et al. Activation of P2RY11 and ATP release by Lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am J Respir Cell Mol Biol. 2014;51:178–90. https://doi.org/10.1165/rcmb.2012-0424OC.

    Article  CAS  PubMed  Google Scholar 

  22. Kandasamy K, Mohan SS, Raju R, et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol. 2010;11:R3. https://doi.org/10.1186/gb-2010-11-1-r3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kandasamy K, Keerthikumar S, Raju R, et al. PathBuilder–open source software for annotating and developing pathway resources. Bioinformatics. 2009;25(21):2860–2. https://doi.org/10.1093/bioinformatics/btp453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kutmon M, van Iersel MP, Bohler A, et al. PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol. 2015;11: e1004085. https://doi.org/10.1371/journal.pcbi.1004085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karaca ZM, Kurtoglu EL, Gul M, et al. Influence of lipoxin-A4 treatment on cytokine, chemokine genes expression, and phenotypic distribution of lymphocyte subsets during experimental liver fibrosis. Eurasian J Med. 2022;54:27–35. https://doi.org/10.5152/eurasianjmed.2022.20030.

    Article  CAS  PubMed  Google Scholar 

  26. Li QQ, Ding DH, Wang XY, et al. Lipoxin A4 regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the Notch signaling pathway. Exp Neurol. 2021;339: 113645. https://doi.org/10.1016/j.expneurol.2021.113645.

    Article  CAS  PubMed  Google Scholar 

  27. Christophe T, Karlsson A, Rabiet MJ, et al. Phagocyte activation by Trp-Lys-Tyr-Met-Val-Met, acting through FPRL1/LXA4R, is not affected by Lipoxin A4. Scand J Immunol. 2002;56:470–6. https://doi.org/10.1046/j.1365-3083.2002.01149.x.

    Article  CAS  PubMed  Google Scholar 

  28. Guo Z, Hu Q, Xu L, et al. Lipoxin A4 reduces inflammation through formyl peptide receptor 2/p38 MAPK signaling pathway in subarachnoid hemorrhage rats. Stroke. 2016;47:490–7. https://doi.org/10.1161/STROKEAHA.115.011223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mai J, Liu W, Fang Y, et al. The atheroprotective role of lipoxin A(4) prevents oxLDL-induced apoptotic signaling in macrophages via JNK pathway. Atherosclerosis. 2018;278:259–68. https://doi.org/10.1016/j.atherosclerosis.2018.09.025.

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Pan H, Zhang HZ, et al. Lipoxin A4 mitigates experimental autoimmune myocarditis by regulating inflammatory response, NF-kappaB and PI3K/Akt signaling pathway in mice. Eur Rev Med Pharmacol Sci. 2017;21:1850–9.

    CAS  PubMed  Google Scholar 

  31. Borgeson E, McGillicuddy FC, Harford KA, et al. Lipoxin A4 attenuates adipose inflammation. FASEB J. 2012;26:4287–94. https://doi.org/10.1096/fj.12-208249.

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Zhang P, Zhang Z, et al. LXA4 ameliorates cerebrovascular endothelial dysfunction by reducing acute inflammation after subarachnoid hemorrhage in rats. Neuroscience. 2019;408:105–14. https://doi.org/10.1016/j.neuroscience.2019.03.038.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu JJ, Yu BY, Fu CC, et al. LXA4 protects against hypoxic-ischemic damage in neonatal rats by reducing the inflammatory response via the IkappaB/NF-kappaB pathway. Int Immunopharmacol. 2020;89: 107095. https://doi.org/10.1016/j.intimp.2020.107095.

    Article  CAS  PubMed  Google Scholar 

  34. Liu S, Wu P, Ye D, et al. Effects of lipoxin A(4) on CoCl(2)-induced angiogenesis and its possible mechanisms in human umbilical vein endothelial cells. Pharmacology. 2009;84(1):17–23. https://doi.org/10.1159/000221379.

    Article  CAS  PubMed  Google Scholar 

  35. Gaudin A, Tolar M, Peters OA. Lipoxin A(4) attenuates the inflammatory response in stem cells of the apical papilla via ALX/FPR2. Sci Rep. 2018;8:8921. https://doi.org/10.1038/s41598-018-27194-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dakin SG, Colas RA, Wheway K, et al. Proresolving mediators LXB4 and RvE1 regulate inflammation in stromal cells from patients with shoulder tendon tears. Am J Pathol. 2019;189:2258–68. https://doi.org/10.1016/j.ajpath.2019.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ye W, Zheng C, Yu D, et al. Lipoxin A4 ameliorates acute pancreatitis-associated acute lung injury through the antioxidative and anti-inflammatory effects of the Nrf2 pathway. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/2197017.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhou M, Chen B, Sun H, et al. The protective effects of Lipoxin A4 during the early phase of severe acute pancreatitis in rats. Scand J Gastroenterol. 2011;46:211–9. https://doi.org/10.3109/00365521.2010.525715.

    Article  CAS  PubMed  Google Scholar 

  39. Dakin SG, Colas RA, Newton J, et al. 15-Epi-LXA(4) and MaR1 counter inflammation in stromal cells from patients with Achilles tendinopathy and rupture. FASEB J. 2019;33:8043–54. https://doi.org/10.1096/fj.201900196R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karra L, Haworth O, Priluck R, et al. Lipoxin B(4) promotes the resolution of allergic inflammation in the upper and lower airways of mice. Mucosal Immunol. 2015;8:852–62. https://doi.org/10.1038/mi.2014.116.

    Article  CAS  PubMed  Google Scholar 

  41. Guo YP, Jiang HK, Jiang H, et al. Lipoxin A4 may attenuate the progression of obesity-related glomerulopathy by inhibiting NF-kappaB and ERK/p38 MAPK-dependent inflammation. Life Sci. 2018;198:112–8. https://doi.org/10.1016/j.lfs.2018.02.039.

    Article  CAS  PubMed  Google Scholar 

  42. Marginean A, Sharma-Walia N. Lipoxins exert antiangiogenic and anti-inflammatory effects on Kaposi’s sarcoma cells. Transl Res. 2015;166:111–33. https://doi.org/10.1016/j.trsl.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  43. Hu F, Liu XX, Wang X, et al. Lipoxin A4 inhibits proliferation and inflammatory cytokine/chemokine production of human epidermal keratinocytes associated with the ERK1/2 and NF-kappaB pathways. J Dermatol Sci. 2015;78:181–8. https://doi.org/10.1016/j.jdermsci.2015.03.009.

    Article  CAS  PubMed  Google Scholar 

  44. Wu L, Miao S, Zou LB, et al. Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury. J Mol Neurosci. 2012;48:185–200. https://doi.org/10.1007/s12031-012-9807-4.

    Article  CAS  PubMed  Google Scholar 

  45. Yu S, Xie J, Xiang Y, et al. Downregulation of TNF-alpha/TNF-R1 signals by AT-Lipoxin A4 may be a significant mechanism of attenuation in SAP-associated lung injury. Mediators Inflamm. 2019. https://doi.org/10.1155/2019/9019404.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bozinovski S, Uddin M, Vlahos R, et al. Serum amyloid A opposes lipoxin A(4) to mediate glucocorticoid refractory lung inflammation in chronic obstructive pulmonary disease. Proc Natl Acad Sci USA. 2012;109:935–40. https://doi.org/10.1073/pnas.1109382109.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abdelmoaty S, Wigerblad G, Bas DB, et al. Spinal actions of Lipoxin A4 and 17 (R)-resolvin D1 attenuate inflammation-induced mechanical hypersensitivity and spinal TNF release. PLoS ONE. 2013;24:8-e75543. https://doi.org/10.1371/journal.pone.0075543.

    Article  CAS  Google Scholar 

  48. Lu T, Wu X, Wei N, et al. Lipoxin A4 protects against spinal cord injury via regulating Akt/nuclear factor (erythroid-derived 2)-like 2/heme oxygenase-1 signaling. Biomed Pharmacother. 2018;97:905–10. https://doi.org/10.1016/j.biopha.2017.10.092.

    Article  CAS  PubMed  Google Scholar 

  49. Wu L, Liu ZJ, Miao S, et al. Lipoxin A4 ameliorates cerebral ischaemia/reperfusion injury through upregulation of nuclear factor erythroid 2-related factor 2. Neurol Res. 2013;35:968–75. https://doi.org/10.1179/1743132813Y.0000000242.

    Article  CAS  PubMed  Google Scholar 

  50. Liu Z, Qu M, Yang Q, et al. Lipoxin A4 ameliorates renal ischaemia-reperfusion-induced acute lung injury in rats. Clin Exp Pharmacol Physiol. 2019;46:65–74. https://doi.org/10.1111/1440-1681.13023.

    Article  CAS  PubMed  Google Scholar 

  51. Luo YY, Wu SH, Lu HY, et al. Lipoxin A4 attenuates hyperoxia-induced lung epithelial cell injury via the upregulation of heme oxygenase-1 and inhibition of proinflammatory cytokines. Mol Med Rep. 2020;21:429–37. https://doi.org/10.3892/mmr.2019.10821.

    Article  CAS  PubMed  Google Scholar 

  52. Yang JX, Li M, Chen XO, et al. Lipoxin A(4) ameliorates lipopolysaccharide-induced lung injury through stimulating epithelial proliferation, reducing epithelial cell apoptosis and inhibits epithelial-mesenchymal transition. Respir Res. 2019;20:192. https://doi.org/10.1186/s12931-019-1158-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen XQ, Wu SH, Zhou Y, et al. Lipoxin A4-induced heme oxygenase-1 protects cardiomyocytes against hypoxia/reoxygenation injury via p38 MAPK activation and Nrf2/ARE complex. PLoS ONE. 2013;2013(8): e67120. https://doi.org/10.1371/journal.pone.0067120.

    Article  CAS  Google Scholar 

  54. Wu SH, Wang MJ, Lu J, et al. Signal transduction involved in lipoxin A4-induced protection of tubular epithelial cells against hypoxia/reoxygenation injury. Mol Med Rep. 2017;15:1682–92. https://doi.org/10.3892/mmr.2017.6195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zong H, Li X, Lin H, et al. Lipoxin A4 pretreatment mitigates skeletal muscle ischemia-reperfusion injury in rats. Am J Transl Res. 2017;9:1139–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang X, Li Z, Jiang S, et al. Lipoxin A4 exerts protective effects against experimental acute liver failure by inhibiting the NF-kappaB pathway. Int J Mol Med. 2016;37:773–80. https://doi.org/10.3892/ijmm.2016.2483.

    Article  CAS  PubMed  Google Scholar 

  57. Asha K, Balfe N, Sharma-Walia N. Concurrent control of the kaposi’s sarcoma-associated herpesvirus life cycle through chromatin modulation and host hedgehog signaling: a new prospect for the therapeutic potential of Lipoxin A4. J Virol. 2020. https://doi.org/10.1128/JVI.02177-19.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zong L, Li J, Chen X, et al. Lipoxin A4 attenuates cell invasion by inhibiting ROS/ERK/MMP pathway in pancreatic cancer. Oxid Med Cell Longev. 2016. https://doi.org/10.1155/2016/6815727.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zong L, Chen K, Jiang Z, et al. Lipoxin A4 reverses mesenchymal phenotypes to attenuate invasion and metastasis via the inhibition of autocrine TGF-beta1 signaling in pancreatic cancer. J Exp Clin Cancer Res. 2017;2017(36):181. https://doi.org/10.1186/s13046-017-0655-5.

    Article  CAS  Google Scholar 

  60. Liu H, Zeng J, Huang W, et al. Colorectal cancer is associated with a deficiency of Lipoxin A4, an endogenous anti-inflammatory mediator. J Cancer. 2019;10:4719–30. https://doi.org/10.7150/jca.32456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang T, Hao H, Zhou XY. The role of lipoxin in regulating tumor immune microenvironments. Prostaglandins Other Lipid Mediat. 2019;144: 106341. https://doi.org/10.1016/j.prostaglandins.2019.106341.

    Article  CAS  PubMed  Google Scholar 

  62. Wu Q, Chong L, Shao Y. Lipoxin A4 reduces hyperoxia-induced lung injury in neonatal rats through PINK1 signaling pathway. Int Immunopharmacol. 2019;73:414–23. https://doi.org/10.1016/j.intimp.2019.05.046.

    Article  CAS  PubMed  Google Scholar 

  63. Chen XQ, Wu SH, Luo YY, et al. Lipoxin A(4) attenuates bronchopulmonary dysplasia via upregulation of Let-7c and downregulation of TGF-beta(1) signaling pathway. Inflammation. 2017;40:2094–108. https://doi.org/10.1007/s10753-017-0649-7.

    Article  CAS  PubMed  Google Scholar 

  64. Sha YH, Hu YW, Gao JJ, et al. Lipoxin A4 promotes ABCA1 expression and cholesterol efflux through the LXRalpha signaling pathway in THP-1 macrophage-derived foam cells. Int J Clin Exp Pathol. 2015;8:6708–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bae YS, Park JC, He R, et al. Differential signaling of formyl peptide receptor-like 1 by Trp-Lys-Tyr-Met-Val-Met-CONH2 or Lipoxin A4 in human neutrophils. Mol Pharmacol. 2003;64:721–30. https://doi.org/10.1124/mol.64.3.721.

    Article  CAS  PubMed  Google Scholar 

  66. Jin W, Jia Y, Huang L, et al. Lipoxin A4 methyl ester ameliorates cognitive deficits induced by chronic cerebral hypoperfusion through activating ERK/Nrf2 signaling pathway in rats. Pharmacol Biochem Behav. 2014;124:145–52. https://doi.org/10.1016/j.pbb.2014.05.023.

    Article  CAS  PubMed  Google Scholar 

  67. Miao GS, Liu ZH, Wei SX, et al. Lipoxin A4 attenuates radicular pain possibly by inhibiting spinal ERK, JNK and NF-kappaB/p65 and cytokine signals, but not p38, in a rat model of non-compressive lumbar disc herniation. Neuroscience. 2015;300:10–8. https://doi.org/10.1016/j.neuroscience.2015.04.060.

    Article  CAS  PubMed  Google Scholar 

  68. Hodges RR, Li D, Shatos MA, et al. Lipoxin A(4) activates ALX/FPR2 receptor to regulate conjunctival goblet cell secretion. Mucosal Immunol. 2017;10:46–57. https://doi.org/10.1038/mi.2016.33.

    Article  CAS  PubMed  Google Scholar 

  69. Kumar R, Clerc AC, Gori I, et al. Lipoxin A(4) prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E(2) production and estrogen signaling. PLoS ONE. 2014;9: e89742. https://doi.org/10.1371/journal.pone.0089742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu Z, Zhang H, Zhang X, et al. Lipoxin A4 delays the progression of retinal degeneration via the inhibition of microglial overactivation. Biochem Biophys Res Commun. 2019;516:900–6. https://doi.org/10.1016/j.bbrc.2019.06.137.

    Article  CAS  PubMed  Google Scholar 

  71. Brennan EP, Mohan M, McClelland A, et al. Lipoxins regulate the early growth response-1 network and reverse diabetic kidney disease. J Am Soc Nephrol. 2019;29:1437–48. https://doi.org/10.1681/ASN.2017101112.

    Article  Google Scholar 

  72. Bai Y, Wang J, He Z, et al. Mesenchymal stem cells reverse diabetic nephropathy disease via Lipoxin A4 by targeting transforming growth factor beta (TGF-beta)/smad pathway and pro-inflammatory cytokines. Med Sci Monit. 2019;25:3069–76. https://doi.org/10.12659/MSM.914860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheng Q, Wang Z, Ma R, et al. Lipoxin A4 protects against lipopolysaccharide-induced sepsis by promoting innate response activator B cells generation. Int Immunopharmacol. 2016;39:229–35. https://doi.org/10.1016/j.intimp.2016.07.026.

    Article  CAS  PubMed  Google Scholar 

  74. Wenceslau CF, McCarthy CG, Szasz T, et al. Lipoxin A4 mediates aortic contraction via RHOA/RHO kinase, endothelial dysfunction and reactive oxygen species. J Vasc Res. 2014;51(6):407–17. https://doi.org/10.1159/000371490.

    Article  CAS  PubMed  Google Scholar 

  75. Wada K, Arita M, Nakajima A, et al. Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J. 2006;20:1785–92. https://doi.org/10.1096/fj.06-5809com.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Karnataka Biotechnology and Information Technology Services (KBITS), Government of Karnataka, for the support to the Center for Systems Biology and Molecular Medicine at Yenepoya (Deemed to be University) under the Biotechnology Skill Enhancement Programme in Multiomics Technology (BiSEP GO ITD 02 MDA 2017).

Author information

Authors and Affiliations

Authors

Contributions

SGP curated the data, drafted the manuscript, and prepared the figures. RDAB critically reviewed and edited the data and manuscript. TSKP reviewed and edited the manuscript. SD conceived the idea, designed the study, critically reviewed, and edited the pathway and manuscript. All authors have reviewed the manuscript.

Corresponding authors

Correspondence to Rex Devasahayam Arokia Balaya or Shobha Dagamajalu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Bernhard Gibbs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchitha, G.P., Devasahayam Arokia Balaya, R., Prasad, T.S.K. et al. A signaling network map of Lipoxin (LXA4): an anti-inflammatory molecule. Inflamm. Res. (2024). https://doi.org/10.1007/s00011-024-01885-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00011-024-01885-6

Keywords

Navigation