Skip to main content

Advertisement

Log in

Acute lung injury: a view from the perspective of necroptosis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS.

Methods

The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented.

Conclusion

Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no new data were created or analyzed in this study.

References

  1. Neto AS, Barbas CSV, Simonis FD, Artigas-Raventós A, Canet J, Determann RM, et al. Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study. Lancet Respir Med. 2016;4:882–93. https://doi.org/10.1016/S2213-2600(16)30305-8.

    Article  PubMed  Google Scholar 

  2. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet. 2021;398:622–37. https://doi.org/10.1016/S0140-6736(21)00439-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. Consensus Committee Intens Care Med. 1994;20:225–32. https://doi.org/10.1007/BF01704707.

    Article  CAS  Google Scholar 

  5. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33. https://doi.org/10.1001/jama.2012.5669.

    Article  CAS  Google Scholar 

  6. Matthay MA, Arabi Y, Arroliga AC, Bernard G, Bersten AD, Brochard LJ, et al. A new global definition of acute respiratory distress syndrome. Am J Resp Crit Care. 2024;209:37–47. https://doi.org/10.1164/rccm.202303-0558WS.

    Article  Google Scholar 

  7. Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury. Am J Physiol Lung Cell Mol Physiol. 2020;318:L215–25. https://doi.org/10.1152/ajplung.00065.2019.

    Article  CAS  PubMed  Google Scholar 

  8. Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370:455–65. https://doi.org/10.1056/NEJMra1310050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1:489–95. https://doi.org/10.1038/82732.

    Article  CAS  PubMed  Google Scholar 

  10. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F, et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 2012;19:2003–14. https://doi.org/10.1038/cdd.2012.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley LP, Hakem R, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 2011;471:368–72. https://doi.org/10.1038/nature09857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, et al. SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res. 2008;68:9384–93. https://doi.org/10.1158/0008-5472.CAN-08-2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. P Natl Acad Sci Usa. 2008;105:11778–83. https://doi.org/10.1073/pnas.0711122105.

    Article  Google Scholar 

  14. Lork M, Verhelst K, Beyaert R. CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ. 2017;24:1172–83. https://doi.org/10.1038/cdd.2017.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Legarda D, Justus SJ, Ang RL, Rikhi N, Li W, Moran TM, et al. CYLD proteolysis protects macrophages from tnf-mediated auto-necroptosis induced by LPS and licensed by type I IFN. Cell Rep. 2016;15:2449–61. https://doi.org/10.1016/j.celrep.2016.05.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL, Chau D, et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature. 2020;577:103–8. https://doi.org/10.1038/s41586-019-1828-5.

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Li F, Zhang X, Zhang H, Zhao Q, Li M, et al. Caspase-8 auto-cleavage regulates programmed cell death and collaborates with RIPK3/MLKL to prevent lymphopenia. Cell Death Differ. 2022;29:1500–12. https://doi.org/10.1038/s41418-022-00938-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Newton K. Multitasking kinase RIPK1 regulates cell death and inflammation. Csh Perspect Biol. 2020;12:a036368. https://doi.org/10.1101/cshperspect.a036368.

    Article  CAS  Google Scholar 

  19. Liang S, Qin X. Critical role of type I interferon-induced macrophage necroptosis during infection with Salmonella enterica serovar Typhimurium. Cell Mol Immunol. 2013;10:99–100. https://doi.org/10.1038/cmi.2012.68.

    Article  CAS  PubMed  Google Scholar 

  20. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021;184:149-168.e17. https://doi.org/10.1016/j.cell.2020.11.025.

    Article  CAS  PubMed  Google Scholar 

  21. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288:31268–79. https://doi.org/10.1074/jbc.M113.462341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. P Natl Acad Sci Usa. 2011;108:20054–9. https://doi.org/10.1073/pnas.1116302108.

    Article  Google Scholar 

  23. Maelfait J, Liverpool L, Bridgeman A, Ragan KB, Upton JW, Rehwinkel J. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J. 2017;36:2529–43. https://doi.org/10.15252/embj.201796476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maelfait J, Rehwinkel J. The Z-nucleic acid sensor ZBP1 in health and disease. J Exp Med. 2023;220:e20221156. https://doi.org/10.1084/jem.20221156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ekhlak M, Kulkarni PP, Singh V, Chaurasia SN, Mohapatra SK, Chaurasia RN, et al. Necroptosis executioner MLKL plays pivotal roles in agonist-induced platelet prothrombotic responses and lytic cell death in a temporal order. Cell Death Differ. 2023;30:1886–99. https://doi.org/10.1038/s41418-023-01181-6.

    Article  CAS  PubMed  Google Scholar 

  26. Najafov A, Mookhtiar AK, Luu HS, Ordureau A, Pan H, Amin PP, et al. TAM kinases promote necroptosis by regulating oligomerization of MLKL. Mol Cell. 2019;75:457-468.e4. https://doi.org/10.1016/j.molcel.2019.05.022.

    Article  CAS  PubMed  Google Scholar 

  27. Dovey CM, Diep J, Clarke BP, Hale AT, McNamara DE, Guo H, et al. MLKL requires the inositol phosphate code to execute necroptosis. Mol Cell. 2018;70:936-948.e7. https://doi.org/10.1016/j.molcel.2018.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jacobsen AV, Lowes KN, Tanzer MC, Lucet IS, Hildebrand JM, Petrie EJ, et al. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis. 2016;7:e2051. https://doi.org/10.1038/cddis.2015.386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnston AN, Ma Y, Liu H, Liu S, Hanna-Addams S, Chen S, et al. Necroptosis-blocking compound NBC1 targets heat shock protein 70 to inhibit MLKL polymerization and necroptosis. P Natl Acad Sci Usa. 2020;117:6521–30. https://doi.org/10.1073/pnas.1916503117.

    Article  CAS  Google Scholar 

  30. Samson AL, Zhang Y, Geoghegan ND, Gavin XJ, Davies KA, Mlodzianoski MJ, et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun. 2020;11:3151. https://doi.org/10.1038/s41467-020-16887-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai Z, Jitkaew S, Zhao J, Chiang H-C, Choksi S, Liu J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 2014;16:55–65. https://doi.org/10.1038/ncb2883.

    Article  CAS  PubMed  Google Scholar 

  32. Pradhan AJ, Chitkara S, Ramirez RX, Monje-Galvan V, Sancak Y, Atilla-Gokcumen GE. Acylation of MLKL Impacts Its Function in Necroptosis. ACS Chem Biol. 2024;19:407–18. https://doi.org/10.1021/acschembio.3c00603.

    Article  CAS  PubMed  Google Scholar 

  33. Weinelt N, Wächtershäuser KN, Celik G, Jeiler B, Gollin I, Zein L, et al. LUBAC-mediated M1 Ub regulates necroptosis by segregating the cellular distribution of active MLKL. Cell Death Dis. 2024;15:77. https://doi.org/10.1038/s41419-024-06447-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fan W, Guo J, Gao B, Zhang W, Ling L, Xu T, et al. Flotillin-mediated endocytosis and ALIX-syntenin-1-mediated exocytosis protect the cell membrane from damage caused by necroptosis. Sci Signal. 2019;12:3423. https://doi.org/10.1126/scisignal.aaw3423.

    Article  CAS  Google Scholar 

  35. Gong Y-N, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell. 2017;169:286-300.e16. https://doi.org/10.1016/j.cell.2017.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu S, Perez P, Sun X, Chen K, Fatirkhorani R, Mammadova J, et al. MLKL polymerization-induced lysosomal membrane permeabilization promotes necroptosis. Cell Death Differ. 2023. https://doi.org/10.1038/s41418-023-01237-7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lou J, Wang X, Zhang H, Yu G, Ding J, Zhu X, et al. Inhibition of PLA2G4E/cPLA2 promotes survival of random skin flaps by alleviating Lysosomal membrane permeabilization-Induced necroptosis. Autophagy. 2022;18:1841–63. https://doi.org/10.1080/15548627.2021.2002109.

    Article  CAS  PubMed  Google Scholar 

  38. Yoon S, Bogdanov K, Kovalenko A, Wallach D. Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ. 2016;23:253–60. https://doi.org/10.1038/cdd.2015.92.

    Article  CAS  PubMed  Google Scholar 

  39. Ino S, Yano T, Kuno A, Tanno M, Kouzu H, Sato T, et al. Nuclear translocation of MLKL enhances necroptosis by a RIP1/RIP3-independent mechanism in H9c2 cardiomyoblasts. J Pharmacol Sci. 2023;151:134–43. https://doi.org/10.1016/j.jphs.2022.12.009.

    Article  CAS  PubMed  Google Scholar 

  40. Sun J, Li Y. Pyroptosis and respiratory diseases: a review of current knowledge. Front Immunol. 2022;13:920464. https://doi.org/10.3389/fimmu.2022.920464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dong J-Y, Yin H-L, Hao H, Liu Y. Research progress on autophagy regulation by active ingredients of traditional Chinese medicine in the treatment of acute lung injury. J Inflamm Res. 2023;16:1671–91. https://doi.org/10.2147/JIR.S398203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell. 1996;85:817–27. https://doi.org/10.1016/s0092-8674(00)81266-0.

    Article  CAS  PubMed  Google Scholar 

  43. Degterev A, Ofengeim D, Yuan J. Targeting RIPK1 for the treatment of human diseases. P Natl Acad Sci Usa. 2019;116:9714–22. https://doi.org/10.1073/pnas.1901179116.

    Article  CAS  Google Scholar 

  44. O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol. 2007;17:418–24. https://doi.org/10.1016/j.cub.2007.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature. 2011;471:363–7. https://doi.org/10.1038/nature09852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature. 2019;574:428–31. https://doi.org/10.1038/s41586-019-1548-x.

    Article  CAS  PubMed  Google Scholar 

  47. Pop C, Oberst A, Drag M, Van Raam BJ, Riedl SJ, Green DR, et al. FLIPL induces caspase-8 activity in the absence of interdomain caspase-8 cleavage and alters substrate specificity. Biochem J. 2011;433:447–57. https://doi.org/10.1042/BJ20101738.

    Article  CAS  PubMed  Google Scholar 

  48. O’Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, et al. CASPASE 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol. 2011;13:1437–42. https://doi.org/10.1038/ncb2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smyth P, Sessler T, Scott CJ, Longley DB. FLIP(L): the pseudo-caspase. FEBS J. 2020;287:4246–60. https://doi.org/10.1111/febs.15260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsuchiya Y, Nakabayashi O, Nakano H. FLIP the switch: regulation of apoptosis and necroptosis by cFLIP. Int J Mol Sci. 2015;16:30321–41. https://doi.org/10.3390/ijms161226232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129–33. https://doi.org/10.1038/nature20559.

    Article  CAS  PubMed  Google Scholar 

  52. Lin J, Kumari S, Kim C, Van T-M, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124–8. https://doi.org/10.1038/nature20558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Orozco S, Yatim N, Werner MR, Tran H, Gunja SY, Tait SWG, et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ. 2014;21:1511–21. https://doi.org/10.1038/cdd.2014.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D, et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science. 2014;343:1357–60. https://doi.org/10.1126/science.1249361.

    Article  CAS  PubMed  Google Scholar 

  55. He W, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25:1285–98. https://doi.org/10.1038/cr.2015.139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Que X, Zheng S, Song Q, Pei H, Zhang P. Fantastic voyage: the journey of NLRP3 inflammasome activation. Genes Dis. 2023;11:819–29. https://doi.org/10.1016/j.gendis.2023.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol. 2013;191:3995–9. https://doi.org/10.4049/jimmunol.1301681.

    Article  CAS  PubMed  Google Scholar 

  58. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. P Natl Acad Sci Usa. 2018;115:E10888–97. https://doi.org/10.1073/pnas.1809548115.

    Article  CAS  Google Scholar 

  59. Malireddi RKS, Gurung P, Kesavardhana S, Samir P, Burton A, Mummareddy H, et al. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J Exp Med. 2020;217:20191644. https://doi.org/10.1084/jem.20191644.

    Article  CAS  Google Scholar 

  60. Kang S, Fernandes-Alnemri T, Rogers C, Mayes L, Wang Y, Dillon C, et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Commun. 2015;6:7515. https://doi.org/10.1038/ncomms8515.

    Article  CAS  PubMed  Google Scholar 

  61. Gutierrez KD, Davis MA, Daniels BP, Olsen TM, Ralli-Jain P, Tait SWG, et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J Immunol. 2017;198:2156–64. https://doi.org/10.4049/jimmunol.1601757.

    Article  CAS  PubMed  Google Scholar 

  62. Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Núñez G, et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. P Natl Acad Sci USA. 2017;114:E961–9. https://doi.org/10.1073/pnas.1613305114.

    Article  CAS  Google Scholar 

  63. Moriwaki K, Bertin J, Gough PJ, Chan FK-M. A RIPK3-caspase 8 complex mediates atypical pro-IL-1β processing. J Immunol. 2015;194:1938–44. https://doi.org/10.4049/jimmunol.1402167.

    Article  CAS  PubMed  Google Scholar 

  64. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA, et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun. 2015;6:6282. https://doi.org/10.1038/ncomms7282.

    Article  CAS  PubMed  Google Scholar 

  65. Kang T-B, Yang S-H, Toth B, Kovalenko A, Wallach D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity. 2013;38:27–40. https://doi.org/10.1016/j.immuni.2012.09.015.

    Article  CAS  PubMed  Google Scholar 

  66. Wu X, Poulsen KL, Sanz-Garcia C, Huang E, McMullen MR, Roychowdhury S, et al. MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis. J Hepatol. 2020;73:616–27. https://doi.org/10.1016/j.jhep.2020.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo F-X, Wu Q, Li P, Zheng L, Ye S, Dai X-Y, et al. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ. 2019;26:1670–87. https://doi.org/10.1038/s41418-018-0235-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu W, Wang X, Sun Y, Berleth N, Deitersen J, Schlütermann D, et al. TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy. Autophagy. 2021;17:3992–4009. https://doi.org/10.1080/15548627.2021.1899667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mejlvang J, Olsvik H, Svenning S, Bruun J-A, Abudu YP, Larsen KB, et al. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol. 2018;217:3640–55. https://doi.org/10.1083/jcb.201711002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhan Q, Jeon J, Li Y, Huang Y, Xiong J, Wang Q, et al. CAMK2/CaMKII activates MLKL in short-term starvation to facilitate autophagic flux. Autophagy, 18:726–44. https://doi.org/10.1080/15548627.2021.1954348

  71. Takahashi Y, He H, Tang Z, Hattori T, Liu Y, Young MM, et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun. 2018;9:2855. https://doi.org/10.1038/s41467-018-05254-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science. 2016;354:1036–41. https://doi.org/10.1126/science.aaf6136.

    Article  CAS  PubMed  Google Scholar 

  73. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17:2054–81. https://doi.org/10.1080/15548627.2020.1810918.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Zhao Z, Xiao Z. The emerging roles of ferroptosis in pathophysiology and treatment of acute lung injury. J Inflamm Res. 2023;16:4073–85. https://doi.org/10.2147/JIR.S420676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Basit F, van Oppen LM, Schöckel L, Bossenbroek HM, van Emst-de Vries SE, Hermeling JC, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 2017;8:e2716. https://doi.org/10.1038/cddis.2017.133.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 2017;48:1033–43. https://doi.org/10.1161/STROKEAHA.116.015609.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Maniam P, Essilfie A-T, Kalimutho M, Ling D, Frazer DM, Phipps S, et al. Increased susceptibility of cystic fibrosis airway epithelial cells to ferroptosis. Biol Res. 2021;54:38. https://doi.org/10.1186/s40659-021-00361-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Naderi S, Khodagholi F, Pourbadie HG, Naderi N, Rafiei S, Janahmadi M, et al. Role of amyloid beta (25–35) neurotoxicity in the ferroptosis and necroptosis as modalities of regulated cell death in Alzheimer’s disease. Neurotoxicology. 2023;94:71–86. https://doi.org/10.1016/j.neuro.2022.11.003.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 2017;8:14329. https://doi.org/10.1038/ncomms14329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tong Y, Wu Y, Ma J, Ikeda M, Ide T, Griffin CT, et al. Comparative mechanistic study of RPE cell death induced by different oxidative stresses. Redox Biol. 2023;65:102840. https://doi.org/10.1016/j.redox.2023.102840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ventura K, Prokopec J, Neupane B, Gao Z, Du W, Gong Y, et al. A necroptosis inhibitor functions as a ferroptosis inducer in drug-resistant myeloid malignancies. Blood. 2023;142:413. https://doi.org/10.1182/blood-2023-173275.

    Article  Google Scholar 

  82. Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Pazopanib ameliorates rotenone-induced Parkinsonism in rats by suppressing multiple regulated cell death mechanisms. Food Chem Toxicol. 2023;181:114069. https://doi.org/10.1016/j.fct.2023.114069.

    Article  CAS  PubMed  Google Scholar 

  83. Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem. 2000;275:10519–26. https://doi.org/10.1074/jbc.275.14.10519.

    Article  CAS  PubMed  Google Scholar 

  84. Yu X, Mao M, Liu X, Shen T, Li T, Yu H, et al. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. J Mol Med (Berl). 2020;98:569–83. https://doi.org/10.1007/s00109-020-01886-y.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao XM, Chen Z, Zhao JB, Zhang PP, Pu YF, Jiang SH, et al. Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis. 2016;7:e2089. https://doi.org/10.1038/cddis.2015.390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 2019;116:2996–3005. https://doi.org/10.1073/pnas.1819728116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen M-S, Wang S-F, Hsu C-Y, Yin P-H, Yeh T-S, Lee H-C, et al. CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway. Oncotarget. 2017;8:114588–602.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 2017;74:3631–45. https://doi.org/10.1007/s00018-017-2547-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou X, Jin J, Lv T, Song Y. A narrative review: the role of NETs in acute respiratory distress syndrome/acute lung injury. Int J Mol Sci. 2024;25:1464. https://doi.org/10.3390/ijms25031464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12:109–16. https://doi.org/10.1016/j.chom.2012.05.015.

    Article  CAS  PubMed  Google Scholar 

  91. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5. https://doi.org/10.1126/science.1092385.

    Article  CAS  PubMed  Google Scholar 

  92. Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–76. https://doi.org/10.1111/j.1462-5822.2005.00659.x.

    Article  CAS  PubMed  Google Scholar 

  93. Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A, Goldman AE, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. P Natl Acad Sci Usa. 2020;117:7326–37. https://doi.org/10.1073/pnas.1909546117.

    Article  CAS  Google Scholar 

  94. Pilsczek FH, Salina D, Poon KKH, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185:7413–25. https://doi.org/10.4049/jimmunol.1000675.

    Article  CAS  PubMed  Google Scholar 

  95. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41. https://doi.org/10.1083/jcb.200606027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Bi. 2020;36:191–218. https://doi.org/10.1146/annurev-cellbio-020520-111016.

    Article  CAS  Google Scholar 

  97. Schreiber A, Rousselle A, Becker JU, von Mässenhausen A, Linkermann A, Kettritz R. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. P Natl Acad Sci USA. 2017;114:E9618–25. https://doi.org/10.1073/pnas.1708247114.

    Article  CAS  Google Scholar 

  98. Desai J, Foresto-Neto O, Honarpisheh M, Steiger S, Nakazawa D, Popper B, et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci Rep. 2017;7:15003. https://doi.org/10.1038/s41598-017-15106-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Han X, Zhang X, Song R, Li S, Zou S, Tan Q, et al. Necrostatin-1 alleviates diffuse pulmonary haemorrhage by preventing the release of NETs via inhibiting NE/GSDMD activation in murine lupus. J Immunol Res. 2023;2023:4743975. https://doi.org/10.1155/2023/4743975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Malireddi RKS, Tweedell RE, Kanneganti T-D. PANoptosis components, regulation, and implications. Aging (Albany NY). 2020;12:11163–4. https://doi.org/10.18632/aging.103528.

    Article  PubMed  Google Scholar 

  101. Place DE, Lee S, Kanneganti T-D. PANoptosis in microbial infection. Curr Opin Microbiol. 2021;59:42–9. https://doi.org/10.1016/j.mib.2020.07.012.

    Article  CAS  PubMed  Google Scholar 

  102. Malireddi RKS, Kesavardhana S, Kanneganti T-D. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Mi. 2019;9:406. https://doi.org/10.3389/fcimb.2019.00406.

    Article  CAS  Google Scholar 

  103. Subbarao Malireddi RK, Karki R, Sundaram B, Kancharana B, Lee S, Samir P, et al. Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth. Immunohorizons. 2021;5:568–80. https://doi.org/10.4049/immunohorizons.2100059.

    Article  CAS  Google Scholar 

  104. Gullett JM, Tweedell RE, Kanneganti T-D. It’s all in the PAN: crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by panoptosis underlying the totality of cell death-associated biological effects. Cells-Basel. 2022;11:1495. https://doi.org/10.3390/cells11091495.

    Article  CAS  Google Scholar 

  105. Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 2021;37:109858. https://doi.org/10.1016/j.celrep.2021.109858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti T-D. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021;597:415–9. https://doi.org/10.1038/s41586-021-03875-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti T-D. RIPK1 distinctly regulates Yersinia-induced inflammatory cell death. PANoptosis Immunohorizons. 2020;4:789–96. https://doi.org/10.4049/immunohorizons.2000097.

    Article  CAS  PubMed  Google Scholar 

  108. Sundaram B, Pandian N, Mall R, Wang Y, Sarkar R, Kim HJ, et al. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell. 2023;186:2783-2801.e20. https://doi.org/10.1016/j.cell.2023.05.005.

    Article  CAS  PubMed  Google Scholar 

  109. Samir P, Malireddi RKS, Kanneganti T-D. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Mi. 2020;10:238. https://doi.org/10.3389/fcimb.2020.00238.

    Article  CAS  Google Scholar 

  110. Ma KC, Schenck EJ, Siempos II, Cloonan SM, Finkelsztein EJ, Pabon MA, et al. Circulating RIPK3 levels are associated with mortality and organ failure during critical illness. JCI Insight. 2018;3(e99692):99692. https://doi.org/10.1172/jci.insight.99692.

    Article  PubMed  Google Scholar 

  111. Yang C-Y, Chen C-S, Yiang G-T, Cheng Y-L, Yong S-B, Wu M-Y, et al. New insights into the immune molecular regulation of the pathogenesis of acute respiratory distress syndrome. Int J Mol Sci. 2018;19:588. https://doi.org/10.3390/ijms19020588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen H, Li Y, Wu J, Li G, Tao X, Lai K, et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ. 2020;27:2568–85. https://doi.org/10.1038/s41418-020-0524-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li H, Guan J, Chen J, Sun W, Chen H, Wen Y, et al. Necroptosis signaling and NLRP3 inflammasome cross-talking in epithelium facilitate Pseudomonas aeruginosa mediated lung injury. Biochim Biophys Acta Mol Basis Dis. 2023;1869:166613. https://doi.org/10.1016/j.bbadis.2022.166613.

    Article  CAS  PubMed  Google Scholar 

  114. Zhu K, Liang W, Ma Z, Xu D, Cao S, Lu X, et al. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis. 2018;9:500. https://doi.org/10.1038/s41419-018-0524-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Orozco SL, Daniels BP, Yatim N, Messmer MN, Quarato G, Chen-Harris H, et al. RIPK3 activation leads to cytokine synthesis that continues after loss of cell membrane integrity. Cell Rep. 2019;28:2275-2287.e5. https://doi.org/10.1016/j.celrep.2019.07.077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Minagawa S, Yoshida M, Araya J, Hara H, Imai H, Kuwano K. Regulated necrosis in pulmonary disease a focus on necroptosis and ferroptosis. Am J Resp Cell Mol. 2020;62:554–62. https://doi.org/10.1165/rcmb.2019-0337TR.

    Article  CAS  Google Scholar 

  117. Jiao Y, Li Z, Loughran PA, Fan EK, Scott MJ, Li Y, et al. Frontline science: macrophage-derived exosomes promote neutrophil necroptosis following hemorrhagic shock. J Leukocyte Biol. 2018;103:175–83. https://doi.org/10.1189/jlb.3HI0517-173R.

    Article  CAS  PubMed  Google Scholar 

  118. Qing DY, Conegliano D, Shashaty MGS, Seo J, Reilly JP, Worthen GS, et al. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. Am J Resp Crit Care. 2014;190:1243–54. https://doi.org/10.1164/rccm.201406-1095OC.

    Article  CAS  Google Scholar 

  119. Sanwal R, Joshi K, Ditmans M, Tsai SSH, Lee WL. Ultrasound and microbubbles for targeted drug delivery to the lung endothelium in ARDS: cellular mechanisms and therapeutic opportunities. Biomedicines. 2021;9:803. https://doi.org/10.3390/biomedicines9070803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Orfanos SE, Mavrommati I, Korovesi I, Roussos C. Pulmonary endothelium in acute lung injury: from basic science to the critically ill. Intens Care Med. 2004;30:1702–14. https://doi.org/10.1007/s00134-004-2370-x.

    Article  CAS  Google Scholar 

  121. Bhattacharya J, Matthay MA. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Physiol. 2013;75:593–615. https://doi.org/10.1146/annurev-physiol-030212-183756.

    Article  CAS  PubMed  Google Scholar 

  122. Maniatis NA, Kotanidou A, Catravas JD, Orfanos SE. Endothelial pathomechanisms in acute lung injury. Vasc Pharmacol. 2008;49:119–33. https://doi.org/10.1016/j.vph.2008.06.009.

    Article  CAS  Google Scholar 

  123. Zelic M, Roderick JE, O’Donnell JA, Lehman J, Lim SE, Janardhan HP, et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J Clin Invest. 2018;128:2064–75. https://doi.org/10.1172/JCI96147.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Price DR, Benedetti E, Hoffman KL, Gomez-Escobar L, Alvarez-Mulett S, Capili A, et al. Angiopoietin 2 is associated with vascular necroptosis induction in coronavirus disease 2019 acute respiratory distress syndrome. Am J Pathol. 2022;192:1001–15. https://doi.org/10.1016/j.ajpath.2022.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang H, Zhang X, Ling C, Liu C, Hua S, Xiong Z, et al. EGFR-TNFR1 pathway in endothelial cell facilitates acute lung injury by NF-κB/MAPK-mediated inflammation and RIP3-dependent necroptosis. Int Immunopharmacol. 2023;117:109902. https://doi.org/10.1016/j.intimp.2023.109902.

    Article  CAS  PubMed  Google Scholar 

  126. Herzog EL, Brody AR, Colby TV, Mason R, Williams MC. Knowns and unknowns of the alveolus. Proc Am Thorac Soc. 2008;5:778–82. https://doi.org/10.1513/pats.200803-028HR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ruaro B, Salton F, Braga L, Wade B, Confalonieri P, Volpe MC, et al. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci. 2021;22:2566. https://doi.org/10.3390/ijms22052566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tojo K, Yamamoto N, Tamada N, Mihara T, Abe M, Nishii M, et al. Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome. Science. 2023;26:105748. https://doi.org/10.1016/j.isci.2022.105748.

    Article  CAS  Google Scholar 

  129. Tamada N, Tojo K, Yazawa T, Goto T. Necrosis rather than apoptosis is the dominant form of alveolar epithelial cell death in lipopolysaccharide-induced experimental acute respiratory distress syndrome model. Shock. 2020;54:128–39. https://doi.org/10.1097/SHK.0000000000001425.

    Article  CAS  PubMed  Google Scholar 

  130. Gong T, Zhang X, Peng Z, Ye Y, Liu R, Yang Y, et al. Macrophage-derived exosomal aminopeptidase N aggravates sepsis-induced acute lung injury by regulating necroptosis of lung epithelial cell. Commun Biol. 2022;5:543. https://doi.org/10.1038/s42003-022-03481-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jiang H-L, Yang H-H, Liu Y-B, Zhang C-Y, Zhong W-J, Guan X-X, et al. L-OPA1 deficiency aggravates necroptosis of alveolar epithelial cells through impairing mitochondrial function during acute lung injury in mice. J Cell Physiol. 2022;237:3030–43. https://doi.org/10.1002/jcp.30766.

    Article  CAS  PubMed  Google Scholar 

  132. Jiang H-L, Yang H-H, Liu Y-B, Duan J-X, Guan X-X, Zhang C-Y, et al. CGRP is essential for protection against alveolar epithelial cell necroptosis by activating the AMPK/L-OPA1 signaling pathway during acute lung injury. J Cell Physiol. 2024;239:e31169. https://doi.org/10.1002/jcp.31169.

    Article  CAS  PubMed  Google Scholar 

  133. Zhao Y, Zhang J, Lu H, Mao Y, Qin J, Wang Y, et al. Cardiopulmonary bypass-derived plasma exosomal hmgb1 contributes to alveolar epithelial cell necroptosis via mtDNA/CGAS/sting pathway. Shock. 2022;58:534–41. https://doi.org/10.1097/SHK.0000000000002006.

    Article  CAS  PubMed  Google Scholar 

  134. Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation. Resp Res. 2018;19:50. https://doi.org/10.1186/s12931-018-0756-5.

    Article  CAS  Google Scholar 

  135. Allard B, Panariti A, Martin JG. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front Immunol. 2018;9:1777. https://doi.org/10.3389/fimmu.2018.01777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Santos LD, Antunes KH, Muraro SP, de Souza GF, da Silva AG, de Felipe J, S, et al. TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection. Eur Respir J. 2021;57:2003764. https://doi.org/10.1183/13993003.03764-2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hao Q, Kundu S, Kleam J, Zhao ZJ, Idell S, Tang H. Enhanced RIPK3 kinase activity-dependent lytic cell death in M1 but not M2 macrophages. Mol Immunol. 2021;129:86–93. https://doi.org/10.1016/j.molimm.2020.11.001.

    Article  CAS  PubMed  Google Scholar 

  138. Zhong W-J, Zhang J, Duan J-X, Zhang C-Y, Ma S-C, Li Y-S, et al. TREM-1 triggers necroptosis of macrophages through mTOR-dependent mitochondrial fission during acute lung injury. J Transl Med. 2023;21:179. https://doi.org/10.1186/s12967-023-04027-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shutinoski B, Alturki NA, Rijal D, Bertin J, Gough PJ, Schlossmacher MG, et al. K45A mutation of RIPK1 results in poor necroptosis and cytokine signaling in macrophages, which impacts inflammatory responses in vivo. Cell Death Differ. 2016;23:1628–37. https://doi.org/10.1038/cdd.2016.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17:293–307. https://doi.org/10.2119/molmed.2010.00138.

    Article  CAS  PubMed  Google Scholar 

  141. Doerschuk CM, Allard MF, Martin BA, MacKenzie A, Autor AP, Hogg JC. Marginated pool of neutrophils in rabbit lungs. J Appl Physiol. 1985;1987(63):1806–15. https://doi.org/10.1152/jappl.1987.63.5.1806.

    Article  Google Scholar 

  142. Lin W-C, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci. 2021;78:4095–124. https://doi.org/10.1007/s00018-021-03768-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bendib I, de Chaisemartin L, Granger V, Schlemmer F, Maitre B, Hüe S, et al. Neutrophil extracellular traps are elevated in patients with pneumonia-related acute respiratory distress syndrome. Anesthesiology. 2019;130:581–91. https://doi.org/10.1097/ALN.0000000000002619.

    Article  CAS  PubMed  Google Scholar 

  144. Li W, Terada Y, Tyurina YY, Tyurin VA, Bery AI, Gauthier JM, et al. Necroptosis triggers spatially restricted neutrophil-mediated vascular damage during lung ischemia reperfusion injury. P Natl Acad Sci USA. 2022;119:e2111537119. https://doi.org/10.1073/pnas.2111537119.

    Article  CAS  Google Scholar 

  145. Zhang T, Yin C, Boyd DF, Quarato G, Ingram JP, Shubina M, et al. Influenza Virus Z-RNAs induce ZBP1-mediated necroptosis. Cell. 2020;180:1115-1129.e13. https://doi.org/10.1016/j.cell.2020.02.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–8. https://doi.org/10.1056/NEJMoa2015432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jackson SP, Schoenwaelder SM. Procoagulant platelets: are they necrotic? Blood. 2010;116:2011–8. https://doi.org/10.1182/blood-2010-01-261669.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang Y, Zhang J, Yan R, Tian J, Zhang Y, Zhang J, et al. Receptor-interacting protein kinase 3 promotes platelet activation and thrombosis. P Natl Acad Sci Usa. 2017;114:2964–9. https://doi.org/10.1073/pnas.1610963114.

    Article  CAS  Google Scholar 

  149. Nakazawa D, Desai J, Steiger S, Müller S, Devarapu SK, Mulay SR, et al. Activated platelets induce MLKL-driven neutrophil necroptosis and release of neutrophil extracellular traps in venous thrombosis. Cell Death Discov. 2018;4:6. https://doi.org/10.1038/s41420-018-0073-2.

    Article  CAS  PubMed  Google Scholar 

  150. Schweizer TA, Mairpady Shambat S, Vulin C, Hoeller S, Acevedo C, Huemer M, et al. Blunted sFasL signalling exacerbates TNF-driven neutrophil necroptosis in critically ill COVID-19 patients. Clin Transl Immunol. 2021;10:e1357. https://doi.org/10.1002/cti2.1357.

    Article  CAS  Google Scholar 

  151. Middleton EA, He X-Y, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136:1169–79. https://doi.org/10.1182/blood.2020007008.

    Article  CAS  PubMed  Google Scholar 

  152. Ng H, Havervall S, Rosell A, Aguilera K, Parv K, von Meijenfeldt FA, et al. Circulating markers of neutrophil extracellular traps are of prognostic value in patients with COVID-19. Arterioscl Throm Vas. 2021;41:988–94. https://doi.org/10.1161/ATVBAHA.120.315267.

    Article  CAS  Google Scholar 

  153. Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell. 2021;184:3852–72. https://doi.org/10.1016/j.cell.2021.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pakshir P, Alizadehgiashi M, Wong B, Coelho NM, Chen X, Gong Z, et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun. 2019;10:1850. https://doi.org/10.1038/s41467-019-09709-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ferrer RA, Saalbach A, Grünwedel M, Lohmann N, Forstreuter I, Saupe S, et al. Dermal fibroblasts promote alternative macrophage activation improving impaired wound healing. J Invest Dermatol. 2017;137:941–50. https://doi.org/10.1016/j.jid.2016.11.035.

    Article  CAS  PubMed  Google Scholar 

  156. Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest. 2023;133:e170499. https://doi.org/10.1172/JCI170499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Boyd DF, Allen EK, Randolph AG, Guo XZJ, Weng Y, Sanders CJ, et al. Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature. 2020;587:466–71. https://doi.org/10.1038/s41586-020-2877-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bedeschi M, Marino N, Cavassi E, Piccinini F, Tesei A. Cancer-associated fibroblast: role in prostate cancer progression to metastatic disease and therapeutic resistance. Cells-Basel. 2023;12:802. https://doi.org/10.3390/cells12050802.

    Article  CAS  Google Scholar 

  159. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200:500–3. https://doi.org/10.1002/path.1427.

    Article  CAS  PubMed  Google Scholar 

  160. Burnham EL, Janssen WJ, Riches DWH, Moss M, Downey GP. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014;43:276–85. https://doi.org/10.1183/09031936.00196412.

    Article  PubMed  Google Scholar 

  161. Dinnon KH, Leist SR, Okuda K, Dang H, Fritch EJ, Gully KL, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eab05070. https://doi.org/10.1126/scitranslmed.abo5070.

    Article  CAS  Google Scholar 

  162. Lee J-M, Yoshida M, Kim M-S, Lee J-H, Baek A-R, Jang AS, et al. Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Resp Cell Mol. 2018;59:215–24. https://doi.org/10.1165/rcmb.2017-0034OC.

    Article  CAS  Google Scholar 

  163. Hussain M, Zimmermann V, van Wijk SJL, Fulda S. Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner. Biochem Pharmacol. 2018;153:242–7. https://doi.org/10.1016/j.bcp.2018.01.025.

    Article  CAS  PubMed  Google Scholar 

  164. Araki K, Kinoshita R, Tomonobu N, Gohara Y, Tomida S, Takahashi Y, et al. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J Mol Med (Berl). 2021;99:131–45. https://doi.org/10.1007/s00109-020-02001-x.

    Article  CAS  PubMed  Google Scholar 

  165. Grant GJ, Liou TG, Paine R, Helms MN. High-mobility group box-1 increases epithelial sodium channel activity and inflammation via the receptor for advanced glycation end products. Am J Physiol Cell Physiol. 2020;318:C570–80. https://doi.org/10.1152/ajpcell.00291.2019.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Li Y, Bao J, Bian Y, Erben U, Wang P, Song K, et al. S100A4+ macrophages are necessary for pulmonary fibrosis by activating lung fibroblasts. Front Immunol. 2018;9:1776. https://doi.org/10.3389/fimmu.2018.01776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen X, Deng Z, Feng J, Chang Q, Lu F, Yuan Y. Necroptosis in macrophage foam cells promotes fat graft fibrosis in mice. Front Cell Dev Biol. 2021;9:651360. https://doi.org/10.3389/fcell.2021.651360.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313–21. https://doi.org/10.1038/nchembio.83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pan L, Yao D-C, Yu Y-Z, Li S-J, Chen B-J, Hu G-H, et al. Necrostatin-1 protects against oleic acid-induced acute respiratory distress syndrome in rats. Biochem Biophys Res Commun. 2016;478:1602–8. https://doi.org/10.1016/j.bbrc.2016.08.163.

    Article  CAS  PubMed  Google Scholar 

  170. Lin B, Jin Z, Chen X, Zhao L, Weng C, Chen B, et al. Necrostatin-1 protects mice from acute lung injury by suppressing necroptosis and reactive oxygen species. Mol Med Rep. 2020;21:2171–81. https://doi.org/10.3892/mmr.2020.11010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Han CH, Guan ZB, Zhang PX, Fang HL, Li L, Zhang HM, et al. Oxidative stress induced necroptosis activation is involved in the pathogenesis of hyperoxic acute lung injury. Biochem Bioph Res Co. 2018;495:2178–83. https://doi.org/10.1016/j.bbrc.2017.12.100.

    Article  CAS  Google Scholar 

  172. Dong L, Liang F, Lou Z, Li Y, Li J, Chen Y, et al. Necrostatin-1 alleviates lung ischemia-reperfusion injury via inhibiting necroptosis and apoptosis of lung epithelial cells. Cells-Basel. 2022;11:3139. https://doi.org/10.3390/cells11193139.

    Article  CAS  Google Scholar 

  173. Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 2012;3:e437. https://doi.org/10.1038/cddis.2012.176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res. 2021;163:105297. https://doi.org/10.1016/j.phrs.2020.105297.

    Article  CAS  PubMed  Google Scholar 

  175. Yuk H, Abdullah M, Kim D-H, Lee H, Lee S-J. Necrostatin-1 prevents ferroptosis in a RIPK1- and IDO-independent manner in hepatocellular carcinoma. Antioxidants (Basel). 2021;10:1347. https://doi.org/10.3390/antiox10091347.

    Article  CAS  PubMed  Google Scholar 

  176. Xu L, Tu Y, Li J, Zhang W, Wang Z, Zhuang C, et al. Structure-based optimizations of a necroptosis inhibitor (SZM594) as novel protective agents of acute lung injury. Chinese Chem Lett. 2022;33:2545–9. https://doi.org/10.1016/j.cclet.2021.09.059.

    Article  CAS  Google Scholar 

  177. Zhang X, Han Q, Hou R, Xu L, Zhang W, Xing C, et al. Targeting receptor-interacting protein kinase 1 by novel benzothiazole derivatives: treatment of acute lung injury through the necroptosis pathway. J Med Chem. 2023;66:5261–78. https://doi.org/10.1021/acs.jmedchem.3c00197.

    Article  CAS  PubMed  Google Scholar 

  178. Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon monoxide signaling: examining its engagement with various molecular targets in the context of binding affinity, concentration, and biologic response. Pharmacol Rev. 2022;74:825–75. https://doi.org/10.1124/pharmrev.121.000564.

    Article  CAS  PubMed Central  Google Scholar 

  179. Li W, Wu F, Chen L, Li Q, Ma J, Li M, et al. Carbon monoxide attenuates lipopolysaccharides (LPS)-induced acute lung injury in neonatal rats via downregulation of Cx43 to reduce necroptosis. Med Sci Monit. 2019;25:6255–63. https://doi.org/10.12659/MSM.917751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lazarus LS, Benninghoff AD, Berreau LM. Development of triggerable, trackable and targetable carbon monoxide releasing molecules. Acc Chem Res. 2020;53:2273–85. https://doi.org/10.1021/acs.accounts.0c00402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Liao D, Sun L, Liu W, He S, Wang X, Lei X. Necrosulfonamide inhibits necroptosis by selectively targeting the mixed lineage kinase domain-like protein. Med Chem Commun. 2014;5:333–7. https://doi.org/10.1039/C3MD00278K.

    Article  CAS  Google Scholar 

  182. Ueda S, Chen-Yoshikawa TF, Tanaka S, Yamada Y, Nakajima D, Ohsumi A, et al. Protective effect of necrosulfonamide on rat pulmonary ischemia-reperfusion injury via inhibition of necroptosis. J Thorac Cardiovasc Surg. 2022;163:e113–22. https://doi.org/10.1016/j.jtcvs.2021.01.037.

    Article  PubMed  Google Scholar 

  183. Huang F, Liang J, Lin Y, Chen Y, Hu F, Feng J, et al. Repurposing of ibrutinib and quizartinib as potent inhibitors of necroptosis. Commun Biol. 2023;6:972. https://doi.org/10.1038/s42003-023-05353-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yu Y, Li M, Fu S, He X, Hu X, Zhu G, et al. Repurposing crizotinib to target RIPK1-dependent cell death. Int Immunol. 2023;35:221–30. https://doi.org/10.1093/intimm/dxac061.

    Article  CAS  PubMed  Google Scholar 

  185. Clot P-F, Farenc C, Suratt BT, Krahnke T, Tardat A, Florian P, et al. Immunomodulatory and clinical effects of receptor-interacting protein kinase 1 (RIPK1) inhibitor eclitasertib (SAR443122) in patients with severe COVID-19: a phase 1b, randomized, double-blinded, placebo-controlled study. Resp Res. 2024;25:107. https://doi.org/10.1186/s12931-024-02670-z.

    Article  CAS  Google Scholar 

  186. Vázquez-Laslop N, Mankin AS. How Macrolide Antibiotics Work. Trends Biochem Sci. 2018;43:668–84. https://doi.org/10.1016/j.tibs.2018.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hassanein EHM, Sayed GA, Alzoghaibi AM, Alammar AS, Abdel-Wahab BA, Abd El-Ghafar OAM, et al. Azithromycin mitigates cisplatin-induced lung oxidative stress, inflammation and necroptosis by upregulating SIRT1, PPARγ, and Nrf2/HO-1 signaling. Pharmaceuticals-Base. 2022;16:52. https://doi.org/10.3390/ph16010052.

    Article  CAS  Google Scholar 

  189. Jing W, Chunhua M, Shumin W. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro. Toxicol Appl Pharm. 2015;285:128–35. https://doi.org/10.1016/j.taap.2015.04.004.

    Article  CAS  Google Scholar 

  190. Ling X, Zhou J, Jin T, Xu W, Sun X, Li W, et al. Acteoside attenuates RSV-induced lung injury by suppressing necroptosis and regulating metabolism. Front Pharmacol. 2022;13:870928. https://doi.org/10.3389/fphar.2022.870928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhou H, Li J, Sun F, Wang F, Li M, Dong Y, et al. A review on recent advances in aloperine research: pharmacological activities and underlying biological mechanisms. Front Pharmacol. 2020;11:538137. https://doi.org/10.3389/fphar.2020.538137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cui Y-R, Qu F, Zhong W-J, Yang H-H, Zeng J, Huang J-H, et al. Beneficial effects of aloperine on inflammation and oxidative stress by suppressing necroptosis in lipopolysaccharide-induced acute lung injury mouse model. Phytomedicine. 2022;100:154074. https://doi.org/10.1016/j.phymed.2022.154074.

    Article  CAS  PubMed  Google Scholar 

  193. Burlou-Nagy C, Bănică F, Jurca T, Vicaș LG, Marian E, Muresan ME, et al. Echinacea purpurea (L.) Moench: biological and pharmacological properties. A review. Plants (Basel). 2022;11:1244. https://doi.org/10.3390/plants11091244.

    Article  CAS  PubMed  Google Scholar 

  194. Guo J, Luo Y, Zuo J, Teng J, Shen B, Liu X. Echinacea polyphenols inhibit NLRP3-dependent pyroptosis, apoptosis, and necroptosis via suppressing NO production during lipopolysaccharide-induced acute lung injury. J Agric Food Chem. 2023;71:7289–98. https://doi.org/10.1021/acs.jafc.2c08382.

    Article  CAS  PubMed  Google Scholar 

  195. Goossens J-F, Bailly C. Ursodeoxycholic acid and cancer: from chemoprevention to chemotherapy. Pharmacol Therapeut. 2019;203:107396. https://doi.org/10.1016/j.pharmthera.2019.107396.

    Article  CAS  Google Scholar 

  196. He Y-Q, Deng J-L, Zhou C-C, Jiang S-G, Zhang F, Tao X, et al. Ursodeoxycholic acid alleviates sepsis-induced lung injury by blocking PANoptosis via STING pathway. Int Immunopharmacol. 2023;125:111161. https://doi.org/10.1016/j.intimp.2023.111161.

    Article  CAS  PubMed  Google Scholar 

  197. Guo Z-L, Li M-X, Li X-L, Wang P, Wang W-G, Du W-Z, et al. Crocetin: a systematic review. Front Pharmacol. 2021;12:745683. https://doi.org/10.3389/fphar.2021.745683.

    Article  CAS  PubMed  Google Scholar 

  198. Ding Y, Ma L, He L, Xu Q, Zhang Z, Zhang Z, et al. A strategy for attenuation of acute radiation-induced lung injury using crocetin from gardenia fruit. Biomed Pharmacother. 2022;149:112899. https://doi.org/10.1016/j.biopha.2022.112899.

    Article  CAS  PubMed  Google Scholar 

  199. Ahmed S, Moni DA, Sonawane KD, Paek KY, Shohael AM. A comprehensive in silico exploration of pharmacological properties, bioactivities and COX-2 inhibitory potential of eleutheroside B from Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. J Biomol Struct Dyn. 2021;39:6553–66. https://doi.org/10.1080/07391102.2020.1803135.

    Article  CAS  PubMed  Google Scholar 

  200. Wang Y, Shen Z, Pei C, Zhao S, Jia N, Huang D, et al. Eleutheroside B ameliorated high altitude pulmonary edema by attenuating ferroptosis and necroptosis through Nrf2-antioxidant response signaling. Biomed Pharmacother. 2022;156:113982. https://doi.org/10.1016/j.biopha.2022.113982.

    Article  CAS  PubMed  Google Scholar 

  201. ESICM LIVES (2019) Intens Care Med Exp 7: 55. https://doi.org/10.1186/s40635-019-0265-y

  202. Maddali MV, Churpek M, Pham T, Rezoagli E, Zhuo H, Zhao W, et al. Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis. Lancet Respir Med. 2022;10:367–77. https://doi.org/10.1016/S2213-2600(21)00461-6.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Siempos II, Ma KC, Imamura M, Baron RM, Fredenburgh LE, Huh J-W, et al. RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury. Jci Insight n.d.;3: e97102. https://doi.org/10.1172/jci.insight.97102

  204. Shashaty MGS, Reilly JP, Faust HE, Forker CM, Ittner CAG, Zhang PX, et al. Plasma receptor interacting protein kinase-3 levels are associated with acute respiratory distress syndrome in sepsis and trauma: a cohort study. Crit Care. 2019;23:235. https://doi.org/10.1186/s13054-019-2482-x.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Nakamura H, Kinjo T, Arakaki W, Miyagi K, Tateyama M, Fujita J. Serum levels of receptor-interacting protein kinase-3 in patients with COVID-19. Crit Care. 2020;24:484. https://doi.org/10.1186/s13054-020-03209-6.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Ruskowski K, Neb H, Talbot SR, Choorapoikayil S, Adam EH, von Knethen A, et al. Persistently elevated plasma concentrations of RIPK3, MLKL, HMGB1, and RIPK1 in patients with COVID-19 in the intensive care unit. Am J Resp Cell Mol. 2022;67:405–8. https://doi.org/10.1165/rcmb.2022-0039LE.

    Article  CAS  Google Scholar 

  207. Vucur M, Roderburg C, Kaiser L, Schneider AT, Roy S, Loosen SH, et al. Elevated serum levels of mixed lineage kinase domain-like protein predict survival of patients during intensive care unit treatment. Dis Markers. 2018;2018:1983421. https://doi.org/10.1155/2018/1983421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wang B, Li J, Gao H-M, Xing Y-H, Lin Z, Li H-J, et al. Necroptosis regulated proteins expression is an early prognostic biomarker in patient with sepsis: a prospective observational study. Oncotarget. 2017;8:84066–73. https://doi.org/10.18632/oncotarget.21099.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Xu L, Zhang W, Zhuang C. Receptor-interacting protein kinase 1 (RIPK1) inhibitor: a review of the patent literature (2018-present). Expert Opin Ther Pat. 2023;33:101–24. https://doi.org/10.1080/13543776.2023.2195548.

    Article  CAS  PubMed  Google Scholar 

  210. Qin Y, Li D, Qi C, Xiang H, Meng H, Liu J, et al. Structure-based development of potent and selective type-II kinase inhibitors of RIPK1. Acta Pharm Sin B. 2024;14:319–34. https://doi.org/10.1016/j.apsb.2023.10.021.

    Article  CAS  PubMed  Google Scholar 

  211. Lickliter J, Wang S, Zhang W, Zhu H, Wang J, Zhao C, et al. A phase I randomized, double-blinded, placebo-controlled study assessing the safety and pharmacokinetics of RIPK1 inhibitor GFH312 in healthy subjects. Clin Transl Sci. 2023. https://doi.org/10.1111/cts.13580.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Jones NS, Kshirsagar S, Mohanan V, Ramakrishnan V, Di Nucci F, Ma L, et al. A phase I, randomized, ascending-dose study to assess safety, pharmacokinetics, and activity of GDC-8264, a RIP1 inhibitor, in healthy volunteers. Clin Transl Sci. 2023;16:1997. https://doi.org/10.1111/cts.13607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sun M, Ma X, Mu W, Li H, Zhao X, Zhu T, et al. Vemurafenib inhibits necroptosis in normal and pathological conditions as a RIPK1 antagonist. Cell Death Dis. 2023;14:555. https://doi.org/10.1038/s41419-023-06065-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang L, Chen B, Xiong X, Chen S, Jin L, Zhu M. Necrostatin-1 synergizes the pan caspase inhibitor to attenuate lung injury induced by ischemia reperfusion in rats. Mediat Inflamm. 2020;2020:7059304. https://doi.org/10.1155/2020/7059304.

    Article  CAS  Google Scholar 

  215. Tu H, Zhou Y-J, Tang LJ, Xiong XM, Zhang XJ, et al. Combination of ponatinib with deferoxamine synergistically mitigates ischemic heart injury via simultaneous prevention of necroptosis and ferroptosis. Eur J Pharmacol. 2021;898:173999. https://doi.org/10.1016/j.ejphar.2021.173999.

    Article  CAS  PubMed  Google Scholar 

  216. Rius-Pérez S, Pérez S, Toledano MB, Sastre J. Mitochondrial reactive oxygen species and lytic programmed cell death in acute inflammation. Antioxid Redox Sign. 2023;39:708–27. https://doi.org/10.1089/ars.2022.0209.

    Article  CAS  Google Scholar 

  217. Peltzer N, Walczak H. Cell death and inflammation—a vital but dangerous liaison. Trends Immunol. 2019;40:387–402. https://doi.org/10.1016/j.it.2019.03.006.

    Article  CAS  PubMed  Google Scholar 

  218. Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21:678–95. https://doi.org/10.1038/s41580-020-0270-8.

    Article  CAS  PubMed  Google Scholar 

  219. Zheng Y, Huang Y, Xu Y, Sang L, Liu X, Li Y. Ferroptosis, pyroptosis and necroptosis in acute respiratory distress syndrome. Cell Death Discov. 2023;9:91. https://doi.org/10.1038/s41420-023-01369-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu C, Xi L, Liu Y, Mak JCW, Mao S, Wang Z, et al. An inhalable hybrid biomimetic nanoplatform for sequential drug release and remodeling lung immune homeostasis in acute lung injury treatment. ACS Nano. 2023;17:11626–44. https://doi.org/10.1021/acsnano.3c02075.

    Article  CAS  PubMed  Google Scholar 

  221. Chaouhan HS, Vinod C, Mahapatra N, Yu S-H, Wang I-K, Chen K-B, et al. Necroptosis: a pathogenic negotiator in human diseases. Int J Mol Sci. 2022;23:12714. https://doi.org/10.3390/ijms232112714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Park S-Y, Park H-H, Park S-Y, Hong SM, Yoon S, Morgan MJ, et al. Reduction in MLKL-mediated endosomal trafficking enhances the TRAIL-DR4/5 signal to increase cancer cell death. Cell Death Dis. 2020;11:744. https://doi.org/10.1038/s41419-020-02941-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Yoon S, Kovalenko A, Bogdanov K, Wallach D. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity. 2017;47:51-65.e7. https://doi.org/10.1016/j.immuni.2017.06.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Rui E Emergency Medicine Research Special Fund (No. 22222012021), National Natural Science Foundation (No. 82374234, No.82204876, No.81974545), China Postdoctoral Science Found (item2020M670045ZX), Postdoctoral Innovation Project of Shandong Province (item202003026), Taishan Scholar(NO.tsqn202103183), National Multidisciplinary Innovation Team Project of Traditional Chinese Medicine (No. ZYYCXTD-D-202201), Shandong Traditional Chinese Medicine Science and Technology Project (Z-2023036) and Shandong Province Medical and Health Technology Development Plan Project (No. 202210000429).

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization of the study was carried out by J.D. and W.L. The investigation was conducted by W.L. and Y.W. The initial draft of the manuscript was written by J.D. The review and editing of the manuscript were performed by H.H. and Y.L. The visualization of the data was done by Q.L., H.W., and G.X. The supervision of the study was provided by H.H. and Y.L. The funding for the study was acquired by H.H. All authors have reviewed and approved the final version of the manuscript for publication.

Corresponding authors

Correspondence to Yang Liu or Hao Hao.

Ethics declarations

Conflict of interests

The authors declare that there are no conflicts of interest.

Additional information

Responsible Editor: Anatolii Kubyshkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Liu, W., Liu, W. et al. Acute lung injury: a view from the perspective of necroptosis. Inflamm. Res. (2024). https://doi.org/10.1007/s00011-024-01879-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00011-024-01879-4

Keywords

Navigation