Skip to main content

Advertisement

Log in

The role of adenosine A1 receptor on immune cells

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Adenosine, acting as a regulator by mediating the activation of G protein-coupled adenosine receptor families (A1, A2A, A2B, and A3), plays an important role under physiological and pathological conditions. As the receptor with the highest affinity for adenosine, the role of adenosine A1 receptor (A1R)-mediated adenosine signaling pathway in the central nervous system has been well addressed. However, functions of A1R on immune cells are less summarized. Considering that some immune cells express multiple types of adenosine receptors with distinct effects and varied density, exogenous adenosine of different concentrations may induce divergent immune cell functions.

Materials and methods

The literatures about the expression of A1R and its regulation on immune cells and how it regulates the function of immune cells were searched on PubMed and Google Scholar.

Conclusion

In this review, we discussed the effects of A1R on immune cells, including monocytes, macrophages, neutrophils, dendritic cells, and microglia, and focused on the role of A1R in regulating immune cells in diseases, which may facilitate our understanding of the mechanisms by which adenosine affects immune cells through A1R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5:247–64. https://doi.org/10.1038/nrd1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29:5346–58. https://doi.org/10.1038/onc.2010.292.

    Article  CAS  PubMed  Google Scholar 

  3. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev. 2011;63:1–34. https://doi.org/10.1124/pr.110.003285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol. 2020;17:611–29. https://doi.org/10.1038/s41571-020-0382-2.

    Article  CAS  PubMed  Google Scholar 

  5. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: the state of the art. Physiol Rev. 2018;98:1591–625. https://doi.org/10.1152/physrev.00049.2017.

    Article  CAS  PubMed  Google Scholar 

  6. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pathological overproduction: the bad side of adenosine. Br J Pharmacol. 2017;174:1945–60. https://doi.org/10.1111/bph.13763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franco R, Cordomí A, Llinas del Torrent C, Lillo A, Serrano-Marín J, Navarro G, Pardo L. Structure and function of adenosine receptor heteromers. Cell Mol Life Sci. 2021;78:3957–68. https://doi.org/10.1007/s00018-021-03761-6.

    Article  CAS  PubMed  Google Scholar 

  8. Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets-what are the challenges? Nat Rev Drug Discov. 2013;12:265–86. https://doi.org/10.1038/nrd3955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Modlinger PS, Welch WJ. Adenosine A1 receptor antagonists and the kidney. Curr Opin Nephrol Hypertens. 2003;12:497–502. https://doi.org/10.1097/00041552-200309000-00003.

    Article  CAS  PubMed  Google Scholar 

  10. Nadeem A, Obiefuna PCM, Wilson CN, Mustafa SJ. Adenosine A1 receptor antagonist versus montelukast on airway reactivity and inflammation. Eur J Pharmacol. 2006;551:116–24. https://doi.org/10.1016/j.ejphar.2006.08.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kashfi S, Ghaedi K, Baharvand H, Nasr-Esfahani MH, Javan M. A1 adenosine receptor activation modulates central nervous system development and repair. Mol Neurobiol. 2017;54:8128–39. https://doi.org/10.1007/s12035-016-0292-6.

    Article  CAS  PubMed  Google Scholar 

  12. Liu YJ, Chen J, Li X, Zhou X, Hu YM, Chu SF, Peng Y, Chen NH. Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther. 2019;25:899–910. https://doi.org/10.1111/cns.13190.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006;112:358–404. https://doi.org/10.1016/j.pharmthera.2005.04.013.

    Article  CAS  PubMed  Google Scholar 

  14. Ren H, Stiles GL. Characterization of the human A1 adenosine receptor gene. Evidence for alternative splicing. J Biol Chem. 1994;269:3104–10. https://doi.org/10.1016/s0021-9258(17)42054-0.

    Article  CAS  PubMed  Google Scholar 

  15. Glukhova A, Thal DM, Nguyen AT, Vecchio EA, Jörg M, Scammells PJ, May LT, Sexton PM, Christopoulos A. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell. 2017;168:867-877.e13. https://doi.org/10.1016/j.cell.2017.01.042.

    Article  CAS  PubMed  Google Scholar 

  16. Jespers W, Schiedel AC, Heitman LH, Cooke RM, Kleene L, van Westen GJP, Gloriam DE, Müller CE, Sotelo E, Gutiérrez-de-Terán H. Structural mapping of adenosine receptor mutations: ligand binding and signaling mechanisms. Trends Pharmacol Sci. 2018;39:75–89. https://doi.org/10.1016/j.tips.2017.11.001.

    Article  CAS  PubMed  Google Scholar 

  17. Klinger M, Freissmuth M, Nanoff C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal. 2002;14:99–108. https://doi.org/10.1016/S0898-6568(01)00235-2.

    Article  CAS  PubMed  Google Scholar 

  18. Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on adenosine receptors as a potential targeted therapy in human diseases. Cells. 2020;9:1–36. https://doi.org/10.3390/cells9030785.

    Article  CAS  Google Scholar 

  19. Defer N, Best-belpomme M, Hanoune J, Cre F, Best-belpomme M, Hanoune J, Sutherland E. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Ren Physiol. 2000;279:400–16. https://doi.org/10.1152/ajprenal.2000.279.3.F400.

    Article  Google Scholar 

  20. Liu AMF, Wong YH. G16-mediated activation of nuclear factor κB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling*. J Biol Chem. 2004;279:53196–204. https://doi.org/10.1074/jbc.M410196200.

    Article  CAS  PubMed  Google Scholar 

  21. Schulte G, Fredholm BB. Human adenosine A1, A(2A), A(2B), and A3 receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol. 2000;58:477–82. https://doi.org/10.1124/mol.58.3.477.

    Article  CAS  PubMed  Google Scholar 

  22. Faure M, Voyno-Yasenetskaya TA, Bourne HR. cAMP and βγ subunits of heterotrimeric G proteins stimulate the mitogen- activated protein kinase pathway in COS-7 cells. J Biol Chem. 1994;269:7851–4. https://doi.org/10.1016/s0021-9258(17)37127-2.

    Article  CAS  PubMed  Google Scholar 

  23. Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal. 2003;15:813–27. https://doi.org/10.1016/S0898-6568(03)00058-5.

    Article  CAS  PubMed  Google Scholar 

  24. Deb PK, Deka S, Borah P, Abed SN, Klotz K-N. Medicinal chemistry and therapeutic potential of agonists, antagonists and allosteric modulators of A1 adenosine receptor: current status and perspectives. Curr Pharm Des. 2019;25:2697–715. https://doi.org/10.2174/1381612825666190716100509.

    Article  CAS  PubMed  Google Scholar 

  25. Yan L, Burbiel JC, Maaß A, Müller CE. Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs. 2003;8:537–76. https://doi.org/10.1517/14728214.8.2.537.

    Article  CAS  PubMed  Google Scholar 

  26. Klotz KN. Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:382–91. https://doi.org/10.1007/s002100000315.

    Article  CAS  PubMed  Google Scholar 

  27. Tosh DK, Phan K, Gao ZG, Gakh AA, Xu F, Deflorian F, Abagyan R, Stevens RC, Jacobson KA, Katritch V. Optimization of adenosine 5’-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J Med Chem. 2012;55:4297–308. https://doi.org/10.1021/jm300095s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bogatko K, Poleszak E, Szopa A, Wyska E, Wlaź P, Świąder K, Wlaź A, Doboszewska U, Rojek K, Serefko A. The influence of selective A1 and A2A receptor antagonists on the antidepressant-like activity of moclobemide, venlafaxine and bupropion in mice. J Pharm Pharmacol. 2018;70:1200–8. https://doi.org/10.1111/jphp.12954.

    Article  CAS  PubMed  Google Scholar 

  29. Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta - Biomembr. 1808;2011:1290–308. https://doi.org/10.1016/j.bbamem.2010.12.017.

    Article  CAS  Google Scholar 

  30. Hocher B. Adenosine A1 receptor antagonists in clinical research and development. Kidney Int. 2010;78:438–45. https://doi.org/10.1038/ki.2010.204.

    Article  CAS  PubMed  Google Scholar 

  31. Moro S, Gao ZG, Jacobson KA, Spalluto G. Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev. 2006;26:131–59. https://doi.org/10.1002/med.20048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheiff AB, Yerande SG, El-Tayeb A, Li W, Inamdar GS, Vasu KK, Sudarsanam V, Müller CE. 2-Amino-5-benzoyl-4-phenylthiazoles: Development of potent and selective adenosine A1 receptor antagonists. Bioorganic Med Chem. 2010;18:2195–203. https://doi.org/10.1016/j.bmc.2010.01.072.

    Article  CAS  Google Scholar 

  33. Muller CE. A1-adenosine receptor antagonists. Expert Opin Ther Pat. 1997;7:419–40. https://doi.org/10.1517/13543776.7.5.419.

    Article  CAS  Google Scholar 

  34. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I, Dikov MM. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–31. https://doi.org/10.1182/blood-2008-02-136325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haskó G, Pacher P. Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32:865–9. https://doi.org/10.1161/ATVBAHA.111.226852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 2013;92:860–7. https://doi.org/10.1177/0022034513500306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He W, Mazumder A, Wilder T, Cronstein BN. Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J. 2013;27:3446–54. https://doi.org/10.1096/fj.13-231233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He W, Cronstein BN. Adenosine A1 receptor regulates osteoclast formation by altering TRAF6/TAK1 signaling. Purinergic Signal. 2012;8:327–37. https://doi.org/10.1007/s11302-012-9292-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kara FM, Chitu V, Sloane J, Axelrod M, Fredholm BB, Stanley ER, Cronstein BN. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J. 2010;24:2325–33. https://doi.org/10.1096/fj.09-147447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. He W, Wilder T, Cronstein BN. Rolofylline, an adenosine A1 receptor antagonist, inhibits osteoclast differentiation as an inverse agonist. Br J Pharmacol. 2013;170:1167–76. https://doi.org/10.1111/bph.12342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kara FM, Doty SB, Boskey A, Goldring S, Zaidi M, Fredholm BB, Cronstein BN. Adenosine A1 receptors regulate bone resorption in mice: Adenosine A1 receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A1 receptor-knockout mice. Arthritis Rheum. 2010;62:534–41. https://doi.org/10.1002/art.27219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Merrill JT, Shen C, Schreibman D, Coffey D, Zakharenko O, Fisher R, Lahita RG, Salmon J, Cronstein BN. Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arthritis Rheum. 1997;40:1308–15. https://doi.org/10.1002/art.16.

    Article  CAS  PubMed  Google Scholar 

  43. Eudy BJ, da Silva RP. Systematic deletion of adenosine receptors reveals novel roles in inflammation and pyroptosis in THP-1 macrophages. Mol Immunol. 2021;132:1–7. https://doi.org/10.1016/j.molimm.2021.01.018.

    Article  CAS  PubMed  Google Scholar 

  44. Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci. 2004;24:1521–9. https://doi.org/10.1523/JNEUROSCI.4271-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koszałka P, Gołuńska M, Urban A, Stasiłojć G, Stanisławowski M, Majewski M, Składanowski AC, Bigda J. Specific activation of A3, A2a and A1 adenosine receptors in CD73-knockout mice affects B16F10 melanoma growth, neovascularization, angiogenesis and macrophage infiltration. PLoS ONE. 2016;11:1–16. https://doi.org/10.1371/journal.pone.0151420.

    Article  CAS  Google Scholar 

  46. Eljaszewicz A, Wiese M, Helmin-Basa A, Jankowski M, Gackowska L, Kubiszewska I, Kaszewski W, Michalkiewicz J, Zegarski W. Collaborating with the enemy: function of macrophages in the development of neoplastic disease. Mediators Inflamm. 2013. https://doi.org/10.1155/2013/831387.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Le Vraux V, Chen YL, Masson I, De Sousa M, Giroud JP, Florentin I, Chauvelot-Moachon L. Inhibition of human monocyte Tnf production by adenosine receptor agonists. Life Sci. 1993;52:1917–24. https://doi.org/10.1016/0024-3205(93)90632-d.

    Article  PubMed  Google Scholar 

  48. Haskó G, Szabó C, Németh ZH, Kvetan V, Pastores SM, Vizi ES. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol. 1996;157:4634–40.

    PubMed  Google Scholar 

  49. Hona W-M, Moochhala S, Khoo H-E. Adenosine and its receptor agonists potentiate nitric oxide synthase expression induced by lipopolysaccharide in RAW 264.7 murine macrophages. Life Sci. 1997;60:1327–35. https://doi.org/10.1016/s0024-3205(97)00078-7.

    Article  Google Scholar 

  50. Zídek Z, Kmoníčková E, Holý A. Involvement of adenosine A 1 receptors in upregulation of nitric oxide by acyclic nucleotide analogues. Eur J Pharmacol. 2004;501:79–86. https://doi.org/10.1016/j.ejphar.2004.08.031.

    Article  CAS  PubMed  Google Scholar 

  51. Joya A, Ardaya M, Montilla A, Garbizu M, Plaza-García S, Gómez-Vallejo V, Padro D, Gutiérrez JJ, Rios X, Ramos-Cabrer P, Cossío U, Pulagam KR, Higuchi M, Domercq M, Cavaliere F, Matute C, Llop J, Martín A. In vivo multimodal imaging of adenosine A1 receptors in neuroinflammation after experimental stroke. Theranostics. 2020;11:410–25. https://doi.org/10.7150/thno.51046.

    Article  CAS  Google Scholar 

  52. Akhtari M, Zargar SJ, Mahmoudi M, Vojdanian M, Rezaeimanesh A, Jamshidi A. Ankylosing spondylitis monocyte-derived macrophages express increased level of A2A adenosine receptor and decreased level of ectonucleoside triphosphate diphosphohydrolase-1 (CD39), A1 and A2B adenosine receptors. Clin Rheumatol. 2018;37:1589–95. https://doi.org/10.1007/s10067-018-4055-9.

    Article  PubMed  Google Scholar 

  53. Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, Power C. Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol. 2001;49:650–8. https://doi.org/10.1002/ana.1007.

    Article  CAS  PubMed  Google Scholar 

  54. Versluis M, Van Den Berge M, Timens W, Luijk B, Rutgers B, Lammers JWJ, Postma DS, Hylkema MN. Allergen inhalation decreases adenosine receptor expression in sputum and blood of asthma patients. Allergy. 2008;63:1186–94. https://doi.org/10.1111/j.1398-9995.2008.01735.x.

    Article  CAS  PubMed  Google Scholar 

  55. Roberta Rose F, Hirschhorn RE, Weissmann G, Cronstein BN. Adenosine promotes neutrophil chemotaxis. J Exp Med. 1988;167:1186–94. https://doi.org/10.1084/jem.167.3.1186.

    Article  Google Scholar 

  56. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O-2 generation, respectively. J Clin Invest. 1990;85:1150–7. https://doi.org/10.1172/JCI114547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu X, Zheng S, Xiong Y, Wang X, Qin W, Zhang H, Sun B. Adenosine effectively restores endotoxin-induced inhibition of human neutrophil chemotaxis via A1 receptor-p38 pathway. Inflamm Res. 2017;66:353–64. https://doi.org/10.1007/s00011-016-1021-3.

    Article  CAS  PubMed  Google Scholar 

  58. Bong GW, Rosengren S, Firestein GS. Spinal cord adenosine receptor stimulation in rats inhibits peripheral neutrophil accumulation: the Role of N-methyl-D-aspartate receptors. J Clin Invest. 1996;98:2779–85. https://doi.org/10.1172/JCI119104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ozacmak VH, Sayan H. Pretreatment with adenosine and adenosine A1 receptor agonist protects againts intestinal ischemia-reperfusion injury in rat. World J Gastroenterol. 2007;13:538–47. https://doi.org/10.3748/wjg.v13.i4.538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fernandez LG, Sharma AK, LaPar DJ, Kron IL, Laubach VE. Adenosine A1 receptor activation attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2013;145:1654–9. https://doi.org/10.1016/j.jtcvs.2013.01.006.Adenosine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gazoni LM, Walters DM, Unger EB, Linden J, Kron IL, Laubach VE. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2010;140:440–6. https://doi.org/10.1016/j.jtcvs.2010.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park SW, Kim JY, Ham A, Brown KM, Kim M, D’Agati VD, Lee HT. A1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia-reperfusion injury. Am J Physiol-Ren Physiol. 2012. https://doi.org/10.1152/ajprenal.00157.2012.

    Article  Google Scholar 

  63. Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol - Ren Physiol. 2004;286:298–306. https://doi.org/10.1152/ajprenal.00185.2003.

    Article  Google Scholar 

  64. Kim J, Kim M, Song JH, Thomas Lee H. Endogenous A1 adenosine receptors protect against hepatic ischemia reperfusion injury in mice. Liver Transplant. 2007;14:845–54. https://doi.org/10.1002/lt.21432.

    Article  Google Scholar 

  65. Forman MB, Vitola JV, Velasco CE, Murray JJ, Dubey RK, Jackson EK. Sustained reduction in myocardial reperfusion injury with an adenosine receptor antagonist: possible role of the neutrophil chemoattractant response. J Pharmacol Exp Ther. 2000;292:929–38.

    CAS  PubMed  Google Scholar 

  66. Cronstein BN, Levin RI, Philips M, Hirschhorn R, Abramson SB, Weissmann G. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol. 1992;148:2201–6.

    CAS  PubMed  Google Scholar 

  67. Felsch A, Stöcker K, Borchard U. Phorbol ester-stimulated adherence of neutrophils to endothelial cells is reduced by adenosine A2 receptor agonists. J Immunol. 1995;155:333–8.

    CAS  PubMed  Google Scholar 

  68. Barletta KE, Ley K, Mehrad B. Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32:856–64. https://doi.org/10.1161/ATVBAHA.111.226845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhalla M, Simmons SR, Abamonte A, Herring SE, Roggensack SE, Bou Ghanem EN. Extracellular adenosine signaling reverses the age-driven decline in the ability of neutrophils to kill Streptococcus pneumoniae. Aging Cell. 2020;19:1–12. https://doi.org/10.1111/acel.13218.

    Article  CAS  Google Scholar 

  70. Salmon JE, Cronstein BN. Fc gamma receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy. A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol. 1990;145:2235–40.

    CAS  PubMed  Google Scholar 

  71. Zalavary S, Stendahl O. The role of cyclic AMP, calcium and filamentous actin in adenosine modulation of Fc receptor-mediated phagocytosis in human neutrophils. Biochim Biophys Acta. 1994;1222:249–56. https://doi.org/10.1016/0167-4889(94)90176-7.

    Article  CAS  PubMed  Google Scholar 

  72. Kälvegren H, Fridfeldt J, Bengtsson T. The role of plasma adenosine deaminase in chemoattractant-stimulated oxygen radical production in neutrophils. Eur J Cell Biol. 2010;89:462–7. https://doi.org/10.1016/j.ejcb.2009.12.004.

    Article  CAS  PubMed  Google Scholar 

  73. Gardner A, de Mingo Pulido Á, Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol. 2020;11:1–14. https://doi.org/10.3389/fimmu.2020.00924.

    Article  CAS  Google Scholar 

  74. Reizis B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity. 2019;50:37–50. https://doi.org/10.1016/j.immuni.2018.12.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou B, Lawrence T, Liang Y. The role of plasmacytoid dendritic cells in cancers. Front Immunol. 2021;12:1–10. https://doi.org/10.3389/fimmu.2021.749190.

    Article  CAS  Google Scholar 

  76. Schnurr M, Toy T, Shin A, Hartmann G, Rothenfusser S, Soellner J, Davis ID, Cebon J, Maraskovsky E. Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood. 2004;103:1391–7. https://doi.org/10.1182/blood-2003-06-1959.

    Article  CAS  PubMed  Google Scholar 

  77. Panther E, Idzko M, Herouy Y, Rheinen H, Gebicke-HAERTER PJ, Mrowietz U, Dichmann S, Norgauer J. Expression and function of adenosine receptors in human dendritic cells. FASEB J. 2001;15:1963–70. https://doi.org/10.1096/fj.01-0169com.

    Article  CAS  PubMed  Google Scholar 

  78. Yasui K, Kondo Y, Wada T, Yashiro M, Tsuge M, Morishima T. Theophylline inhibits the differentiation of human monocyte into dendritic cell potentially via adenosine receptor antagonism. Clin Exp Allergy. 2009;39:1857–65. https://doi.org/10.1111/j.1365-2222.2009.03365.x.

    Article  CAS  PubMed  Google Scholar 

  79. Desrosiers MD, Cembrola KM, Fakir MJ, Stephens LA, Jama FM, Shameli A, Mehal WZ, Santamaria P, Shi Y. Adenosine deamination sustains dendritic cell activation in inflammation. J Immunol. 2007;179:1884–92. https://doi.org/10.4049/jimmunol.179.3.1884.

    Article  CAS  PubMed  Google Scholar 

  80. Chen L, Fredholm BB, Jondal M. Adenosine, through the A1 receptor, inhibits vesicular MHC class I cross-presentation by resting DC. Mol Immunol. 2008;45:2247–54. https://doi.org/10.1016/j.molimm.2007.11.016.

    Article  CAS  PubMed  Google Scholar 

  81. Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts. Cell. 2019;179:292–311. https://doi.org/10.1016/j.cell.2019.08.053.

    Article  CAS  PubMed  Google Scholar 

  82. Ohsawa K, Kohsaka S. Dynamic motility of microglia: purinergic modulation of microglial movement in the normal and pathological brain. Glia. 2011;59:1793–9. https://doi.org/10.1002/glia.21238.

    Article  PubMed  Google Scholar 

  83. Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. 2014;32:367–402. https://doi.org/10.1146/annurev-immunol-032713-120240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Luongo L, Guida F, Imperatore R, Napolitano F, Gatta L, Cristino L, Giordano C, Siniscalco D, Di Marzo V, Bellini G, Petrelli R, Cappellacci L, Usiello A, de Novellis V, Rossi F, Maione S. The A1 adenosine receptor as a new player in microglia physiology. Glia. 2014;62:122–32. https://doi.org/10.1002/glia.22592.

    Article  CAS  PubMed  Google Scholar 

  85. Ohsawa K, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S. Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem. 2012;121:217–27. https://doi.org/10.1111/j.1471-4159.2012.07693.x.

    Article  CAS  PubMed  Google Scholar 

  86. Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43. https://doi.org/10.1146/annurev-physiol-022516-034406.

    Article  CAS  PubMed  Google Scholar 

  87. Marucci G, Dal Ben D, Lambertucci C, Navia AM, Spinaci A, Volpini R, Buccioni M. Combined therapy of A1AR agonists and A2AAR antagonists in neuroinflammation. Molecules. 2021;26:1188. https://doi.org/10.3390/molecules26041188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta - Biomembr. 1808;2011:1380–99. https://doi.org/10.1016/j.bbamem.2010.12.001.

    Article  CAS  Google Scholar 

  89. Haselkorn ML, Shellington DK, Jackson EK, Vagni VA, Janesko-Feldman K, Dubey RK, Gillespie DG, Cheng D, Bell MJ, Jenkins LW, Homanics GE, Schnermann J, Kochanek PM. Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice. J Neurotrauma. 2010;27:901–10. https://doi.org/10.1089/neu.2009.1075.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E, Perego C, de Simoni MG, Fredholm BB, Eusebi F, Limatola C. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci. 2011;31:16327–35. https://doi.org/10.1523/JNEUROSCI.3611-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Catalano M, Lauro C, Cipriani R, Chece G, Ponzetta A, Di Angelantonio S, Ragozzino D, Limatola C. CX3CL1 protects neurons against excitotoxicity enhancing GLT-1 activity on astrocytes. J Neuroimmunol. 2013;263:75–82. https://doi.org/10.1016/j.jneuroim.2013.07.020.

    Article  CAS  PubMed  Google Scholar 

  92. Luongo L, Petrelli R, Gatta L, Giordano C, Guida F, Vita P, Franchetti P, Grifantini M, De Novellis V, Cappellacci L, Maione S. 5’-Chloro-5’-deoxy-(±)-ENBA, a potent and selective adenosine A1 receptor agonist, alleviates neuropathic pain in mice through functional glial and microglial changes without affecting motor or cardiovascular functions. Molecules. 2012;17:13712–26. https://doi.org/10.3390/molecules171213712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, Van Calker D. Both adenosine A1- and A2-receptors are required to stimulate microglial proliferation. Neurochem Int. 1996;29:37–42. https://doi.org/10.1016/0197-0186(95)00137-9.

    Article  CAS  PubMed  Google Scholar 

  94. Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL. Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood. 2013;122:9–18. https://doi.org/10.1182/blood-2013-02-482406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Figueiró F, Muller L, Funk S, Jackson EK, Battastini AMO, Whiteside TL. Phenotypic and functional characteristics of CD39high human regulatory B cells (Breg). Oncoimmunology. 2016;5: e1082703. https://doi.org/10.1080/2162402X.2015.1082703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mei HF, Poonit N, Zhang YC, Ye CY, Cai HL, Yu CY, Zhou YH, Bei Wu B, Cai J, Cai XH. Activating adenosine A1 receptor accelerates PC12 cell injury via ADORA1/PKC/KATP pathway after intermittent hypoxia exposure. Mol Cell Biochem. 2018;446:161–70. https://doi.org/10.1007/s11010-018-3283-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31870899 and 32070899 to X.Z., 82103304 to Q.P.) and the Independent Task of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (2022zz07 to Q.P.).

Author information

Authors and Affiliations

Authors

Contributions

LZ drafted the main body of this manuscript and drew the figures. QP modified the manuscript. XZ takes primary responsibility for this paper as the corresponding author. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Qiao Peng or Xun Zeng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Peng, Q. & Zeng, X. The role of adenosine A1 receptor on immune cells. Inflamm. Res. 71, 1203–1212 (2022). https://doi.org/10.1007/s00011-022-01607-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01607-w

Keywords

Navigation