Skip to main content

Adenosine Regulation of the Immune System

  • Chapter
  • First Online:
The Adenosine Receptors

Part of the book series: The Receptors ((REC,volume 34))

Abstract

Adenosine is an endogenous nucleoside, released into the extracellular space in response to metabolic stress and cell damage and critically involved in the maintenance of tissue integrity by modulation of the immune system.

The magnitude and duration of adenosine signaling are dictated by the expression and activity of a plethora of synthetic and catabolic enzymes as well as nucleoside transporters, which calibrate finely the concentration of this nucleoside in the biophase of specific receptors. Indeed, once released into the extracellular space, adenosine governs several aspects of immune cell functions by interaction with four G-protein-coupled cell membrane receptors, designated as A1, A2A, A2B, and A3 receptors.

The engagement of such receptors, expressed heterogeneously on the surface of several immune cell populations, including neutrophils, macrophages, dendritic cells, mast cells, and lymphocytes, shapes a broad array of immune cell functions, which include cytokine production, degranulation, chemotaxis, cytotoxicity, apoptosis, and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    Article  PubMed  CAS  Google Scholar 

  • Alfaro TM, Rodrigues DI, Tome AR et al (2017) Adenosine A2A receptors are up-regulated and control the activation of human alveolar macrophages. Pulm Pharmacol Ther 45:90–94

    Article  PubMed  CAS  Google Scholar 

  • Allison AC, Hovi T, Watts RW et al (1977). The role of de novo purine synthesis in lymphocyte transformation. Ciba Found Symp. 48:207–224

    Google Scholar 

  • Antonioli L, Fornai M, Colucci R et al (2008) Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 120:233–253

    Article  PubMed  CAS  Google Scholar 

  • Antonioli L, Colucci R, La Motta C et al (2012) Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders. Curr Drug Targets 13:842–862

    Article  PubMed  CAS  Google Scholar 

  • Antonioli L, Blandizzi C, Pacher P et al (2013a) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13:842–857

    Article  PubMed  CAS  Google Scholar 

  • Antonioli L, Pacher P, Vizi ES et al (2013b) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antonioli L, Csoka B, Fornai M et al (2014) Adenosine and inflammation: what’s new on the horizon? Drug Discov Today 19:1051–1068. https://doi.org/10.1016/j.drudis.2014.02.010

    Article  PubMed  CAS  Google Scholar 

  • Antonioli L, Yegutkin GG, Pacher P et al (2016) Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends in cancer 2:95–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonioli L, Novitskiy SV, Sachsenmeier KF et al (2017) Switching off CD73: a way to boost the activity of conventional and targeted antineoplastic therapies. Drug Discov Today 22:1686–1696. https://doi.org/10.1016/j.drudis.2017.06.005

    Article  PubMed  CAS  Google Scholar 

  • Ballet JJ, Insel R, Merler E et al (1976) Inhibition of maturation of human precursor lymphocytes by coformycin, an inhibitor of the enzyme adenosine deaminase. J Exp Med 143:1271–1276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barletta KE, Ley K, Mehrad B (2012) Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 32:856–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birch RE, Polmar SH (1986) Adenosine induced immunosuppression: the role of the adenosine receptor--adenylate cyclase interaction in the alteration of T-lymphocyte surface phenotype and immunoregulatory function. Int J Immunopharmacol 8:329–337

    Article  PubMed  CAS  Google Scholar 

  • Bours MJ, Swennen EL, Di Virgilio F et al (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  PubMed  CAS  Google Scholar 

  • Bowlin TL, Borcherding DR, Edwards CK 3rd et al (1997) Adenosine A3 receptor agonists inhibit murine macrophage tumor necrosis factor-alpha production in vitro and in vivo. Cell Mol Biol 43:345–349

    PubMed  CAS  Google Scholar 

  • Burnstock G (1976) Purinergic receptors. J Theor Biol 62:491–503

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  PubMed  CAS  Google Scholar 

  • Burridge PW, Paetkau V, Henderson JF (1977) Studies of the relationship between adenosine deaminase and immune function. J Immunol 119:675–678

    PubMed  CAS  Google Scholar 

  • Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192

    Article  CAS  PubMed  Google Scholar 

  • Chan ES, Cronstein BN (2010) Methotrexate--how does it really work? Nat Rev Rheumatol 6:175–178

    Article  CAS  PubMed  Google Scholar 

  • Chan ES, Cronstein BN (2013) Mechanisms of action of methotrexate. Bulletin of the Hospital for Joint Disease 71(Suppl 1):S5–S8

    Google Scholar 

  • Chen Y, Corriden R, Inoue Y et al (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795

    Article  PubMed  CAS  Google Scholar 

  • Cohen F (1975) Adenosine deaminase and immunodeficiency. Birth Defects Orig Artic Ser 11:124–127

    PubMed  CAS  Google Scholar 

  • Cohen A, Gudas LJ, Ullman B et al (1978) Nucleotide metabolism in cultured T cells and in cells of patients deficient in adenosine deaminase and purine nucleoside phosphorylase. Ciba Found Symp. 68:101–114

    Google Scholar 

  • Cohen HB, Ward A, Hamidzadeh K et al (2015) IFN-gamma prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response. J Immunol 195:3828–3837

    Article  PubMed  CAS  Google Scholar 

  • Corriden R, Self T, Akong-Moore K et al (2013) Adenosine-A3 receptors in neutrophil microdomains promote the formation of bacteria-tethering cytonemes. EMBO Rep 14:726–732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cronstein BN, Sitkovsky M (2017) Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 13:41–51

    Article  PubMed  CAS  Google Scholar 

  • Cronstein BN, Kramer SB, Rosenstein ED et al (1985a) Adenosine modulates the generation of superoxide anion by stimulated human neutrophils via interaction with a specific cell surface receptor. Ann N Y Acad Sci 451:291–301

    Article  PubMed  CAS  Google Scholar 

  • Cronstein BN, Rosenstein ED, Kramer SB et al (1985b) Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils Journal of immunology 135:1366–1371

    CAS  Google Scholar 

  • Cronstein BN, Van de Stouwe M, Druska L et al (1994) Nonsteroidal antiinflammatory agents inhibit stimulated neutrophil adhesion to endothelium: adenosine dependent and independent mechanisms. Inflammation 18:323–335

    Article  PubMed  CAS  Google Scholar 

  • Cronstein BN, Montesinos MC, Weissmann G (1999) Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. Proc Natl Acad Sci U S A 96:6377–6381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csoka B, Himer L, Selmeczy Z et al (2008) Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22:3491–3499

    Article  CAS  Google Scholar 

  • Csoka B, Selmeczy Z, Koscsó B et al (2012) Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26:376–386

    Article  CAS  Google Scholar 

  • Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delikouras A, Fairbanks LD, Simmonds AH et al (2003) Endothelial cell cytoprotection induced in vitro by allo- or xenoreactive antibodies is mediated by signaling through adenosine A2 receptors. Eur J Immunol 33:3127–3135

    Article  PubMed  CAS  Google Scholar 

  • DePierre JW, Karnovsky ML (1974) Ecto-enzyme of granulocytes: 5′-nucleotidase. Science 183:1096–1098

    Article  PubMed  CAS  Google Scholar 

  • Dickenson JM, Reeder S, Rees B et al (2003) Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106. Eur J Pharmacol 474:43–51

    Article  PubMed  CAS  Google Scholar 

  • Dinjens WN, van Doorn R, van Laarhoven JP et al (1986) Adenosine receptors on human T lymphocytes and human thymocytes. Adv Exp Med Biol 195 Pt B:1–6

    PubMed  CAS  Google Scholar 

  • Dubois KP, Petersen DF (1954) Adenosine triphosphatase and 5-nucleotidase activity of hematopoietic tissues of irradiated animals. Am J Phys 176:282–286

    CAS  Google Scholar 

  • Eltzschig HK, Thompson LF, Karhausen J et al (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104:3986–3992

    Google Scholar 

  • Erdmann AA, Gao ZG, Jung U et al (2005) Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood 105:4707–4714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrante CJ, Pinhal-Enfield G, Elson G et al (2013) The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation 36:921–931

    Article  PubMed  CAS  Google Scholar 

  • Fleit H, Conklyn M, Stebbins RD et al (1975) Function of 5′-nucleotidase in the uptake of adenosine from AMP by human lymphocytes. J Biol Chem 250:8889–8892

    PubMed  CAS  Google Scholar 

  • Frasson AP, Menezes CB, Goelzer GK et al (2017) Adenosine reduces reactive oxygen species and interleukin-8 production by Trichomonas vaginalis-stimulated neutrophils. Purinergic signalling 13:569–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gessi S, Varani K, Merighi S et al (2001) Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br J Pharmacol 134:116–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gessi S, Varani K, Merighi S et al (2004) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65:711–719

    Article  PubMed  CAS  Google Scholar 

  • Giambelluca MS, Pouliot M (2017) Early tyrosine phosphorylation events following adenosine A2A receptor in human neutrophils: identification of regulated pathways. J Leukoc Biol 102:829–836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giblett ER, Anderson JE, Cohen F et al (1972) Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2:1067–1069

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Pluddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262:36–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green H, Chan T (1973) Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science 182:836–837

    Article  PubMed  CAS  Google Scholar 

  • Hall JG (1963) Adenosine deaminase activity in lymphoid cells during antibody production. Aust J Exp Biol Med Sci 41:93–97

    Article  PubMed  CAS  Google Scholar 

  • Harrap KR, Paine RM (1976) Adenosine metabolism in cultured lymphoid cells. Adv Enzym Regul 15:169–193

    Article  CAS  Google Scholar 

  • Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Cronstein B (2013) Regulation of inflammation by adenosine. Front Immunol 4:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasko G, Pacher P (2012) Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 32:865–869

    Google Scholar 

  • Hasko G, Szabo C, Nemeth ZH et al (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157:4634–4640

    Google Scholar 

  • Hasko G, Kuhel DG, Chen JF et al (2000) Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 14:2065–2074

    Article  CAS  Google Scholar 

  • Hasko G, Pacher P, Deitch EA et al (2007) Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther 113:264–275

    Google Scholar 

  • Hasko G, Linden J, Cronstein B et al (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770.

    Google Scholar 

  • Hasko G, Csoka B, Nemeth ZH et al (2009) A(2B) adenosine receptors in immunity and inflammation. Trends Immunol 30:263–270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hauser RA, Stocchi F, Rascol O et al (2015) Preladenant as an adjunctive therapy with levodopa in Parkinson disease: two randomized clinical trials and lessons learned. JAMA Neurol 72:1491–1500

    Article  PubMed  Google Scholar 

  • Hoskin DW, Butler JJ, Drapeau D et al (2002) Adenosine acts through an A3 receptor to prevent the induction of murine anti-CD3-activated killer T cells. International journal of cancer Journal international du cancer 99:386–395

    Google Scholar 

  • Hovi T, Smyth JF, Allison AC et al (1976) Role of adenosine deaminase in lymphocyte proliferation. Clin Exp Immunol 23:395–403

    PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue Y, Chen Y, Hirsh MI et al (2008) A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock 30:173–177

    Google Scholar 

  • Johnston A, Gudjonsson JE, Sigmundsdottir H et al (2005) The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin Immunol 114:154–163

    Article  PubMed  CAS  Google Scholar 

  • Joos G, Jákim J, Kiss B et al (2017) Involvement of adenosine A3 receptors in the chemotactic navigation of macrophages towards apoptotic cells. Immunol Lett 183:62–72

    Article  PubMed  CAS  Google Scholar 

  • Karker H (1965) Adenosine deaminase activity in normal leukocytes. Scand J Clin Lab Invest 17:95–98

    Article  PubMed  CAS  Google Scholar 

  • Khoa ND, Montesinos MC, Reiss AB et al (2001) Inflammatory cytokines regulate function and expression of adenosine A(2A) receptors in human monocytic THP-1 cells. J Immunol 167:4026–4032

    Article  PubMed  CAS  Google Scholar 

  • Koscso B, Csóka B, Kókai E et al (2013) Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. J Leukoc Biol 94:1309–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koshiba M, Rosin DL, Hayashi N et al (1999) Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Mol Pharmacol 55:614–624

    PubMed  CAS  Google Scholar 

  • Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 174:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Chung HJ, Lee HW et al (2011) Suppression of inflammation response by a novel A(3) adenosine receptor agonist thio-Cl-IB-MECA through inhibition of Akt and NF-kappaB signaling. Immunobiology 216:997–1003

    Google Scholar 

  • Liang D, Zuo A, Shao H et al (2015) A2B adenosine receptor activation switches differentiation of bone marrow cells to a CD11c(+)Gr-1(+) dendritic cell subset that promotes the Th17 response. Immunity, inflammation and disease 3:360–373

    Google Scholar 

  • Linden J (2006) Cell biology. Purinergic chemotaxis. Science 314:1689–1690

    Google Scholar 

  • Linden J (2011) Regulation of leukocyte function by adenosine receptors. Adv Pharmacol 61:95–114

    Google Scholar 

  • Linden J, Cekic C (2012) Regulation of lymphocyte function by adenosine. Arterioscler Thromb Vasc Biol 32:2097–2103

    Google Scholar 

  • Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A 77:2551–2554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lukashev DE, Smith PT, Caldwell CC et al (2003) Analysis of A2a receptor-deficient mice reveals no significant compensatory increases in the expression of A2b, A1, and A3 adenosine receptors in lymphoid organs. Biochem Pharmacol 65:2081–2090

    Article  PubMed  CAS  Google Scholar 

  • Mabley J, Soriano F, Pacher P et al (2003) The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5’-N-methyluronamide, is protective in two murine models of colitis. Eur J Pharmacol 466:323–329

    Article  PubMed  CAS  Google Scholar 

  • Marone G, Triggiani M, Kagey-Sobotka A et al (1986) Adenosine receptors on human basophils and lung mast cells. Adv Exp Med Biol 195 Pt B:35–42

    Article  PubMed  CAS  Google Scholar 

  • Mayadas TN, Cullere X, Lowell CA (2014) The multifaceted functions of neutrophils. Annu Rev Pathol 9:181–218

    Article  PubMed  CAS  Google Scholar 

  • McWhinney CD, Dudley MW, Bowlin TL et al (1996) Activation of adenosine A3 receptors on macrophages inhibits tumor necrosis factor-alpha. Eur J Pharmacol 310:209–216

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen HJ, Pickering RJ, Pollara B (1975) Adenosine deaminase deficiency in combined immunologic deficiency disease. Birth Defects Orig Artic Ser 11:117–119

    PubMed  CAS  Google Scholar 

  • Mirabet M, Herrera C, Cordero OJ et al (1999) Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation. J Cell Sci 112(Pt 4):491–502

    PubMed  CAS  Google Scholar 

  • Naganuma M, Wiznerowicz EB, Lappas CM et al (2006) Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol 177:2765–2769

    Article  PubMed  CAS  Google Scholar 

  • Nemeth ZH, Lutz CS, Csóka B et al (2005) Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J Immunol 175:8260–8270

    Article  PubMed  CAS  Google Scholar 

  • Nishida Y, Takeuchi A, Miyamoto T (1986) Modulation of polymorphonuclear leukocyte function by adenosine analogues. Adv Exp Med Biol 195 Pt A:487–490

    Article  PubMed  CAS  Google Scholar 

  • Novitskiy SV Ryzhov S, Zaynagetdinov R et al (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–1831

    Article  PubMed  CAS  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  PubMed  CAS  Google Scholar 

  • Ohta A, Kini R, Ohta A et al (2012) The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 3:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacheco R, Martinez-Navio JM, Lejeune M et al (2005) CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci U S A 102:9583–9588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raskovalova T, Huang X, Sitkovsky M et al (2005) Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol 175:4383–4391

    Article  PubMed  CAS  Google Scholar 

  • Romio M, Reinbeck B, Bongardt S et al (2011) Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Physiol Cell Physiol 301:C530–C539

    Article  PubMed  CAS  Google Scholar 

  • Rudich N, Ravid K, Sagi-Eisenberg R (2012) Mast cell adenosine receptors function: a focus on the a3 adenosine receptor and inflammation. Front Immunol 3:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Samet MK (1986) Evidence against functional adenosine receptors on murine lymphocytes. Int J Immunopharmacol 8:179–188

    Article  PubMed  CAS  Google Scholar 

  • Schnurr M, Toy T, Shin A et al (2004) Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood 103:1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AL, Stern RC, Polmar SH (1978) Demonstration of adenosine receptor on human lymphocytes in vitro and its possible role in the adenosine deaminase-deficient form of severe combined immunodeficiency. Clin Immunol Immunopathol 9:499–505

    Article  PubMed  CAS  Google Scholar 

  • Seegmiller JE, Watanabe T, Schreier MH (1977a) The effect of adenosine on lymphoid cell proliferation and antibody formation. Ciba Found Symp. 48:249–276

    Google Scholar 

  • Seegmiller JE, Watanabe T, Shreier MH et al (1977b) Immunological aspects of purine metabolism. Adv Exp Med Biol 76A:412–433

    PubMed  CAS  Google Scholar 

  • Sevigny CP, Li L, Awad AS et al (2007) Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J Immunol 178:4240–4249

    Article  PubMed  CAS  Google Scholar 

  • Sevigny J, Martin-Satue M, Pintor J (2015) Purinergic signalling in immune system regulation in health and disease. Mediat Inflamm 2015:106863

    Google Scholar 

  • Silverman MH, Strand V, Markovits D et al (2008) Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: data from a phase II clinical trial. J Rheumatol 35:41–48

    PubMed  CAS  Google Scholar 

  • Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:712–721

    Article  PubMed  CAS  Google Scholar 

  • Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26:299–304

    Google Scholar 

  • Smith SR, Denhardt G, Terminelli C (2002) A role for histamine in cytokine modulation by the adenosine A(3) receptor agonist, 2-Cl-IB-MECA. Eur J Pharmacol 457:57–69

    Article  PubMed  CAS  Google Scholar 

  • Snyder FF, Mendelsohn J, Seegmiller JE (1976) Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes. J Clin Invest 58:654–666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snyder FF, Mendelsohn J, Seegmiller JE (1977) Adenosine and guanosine metabolism during phytohemagglutinin induced transformation of human lymphocytes. Adv Exp Med Biol 76A:441–447

    PubMed  CAS  Google Scholar 

  • Stocchi F, Rascol O, Hauser RA et al (2017) Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology 88:2198–2206

    Article  PubMed  CAS  Google Scholar 

  • Sun WC, Moore JN, Hurley DJ et al (2007) Effects of stimulation of adenosine A2A receptors on lipopolysaccharide-induced production of reactive oxygen species by equine neutrophils. Am J Vet Res 68:649–656

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Scott GS, Virag L et al (1998) Suppression of macrophage inflammatory protein (MIP)-1alpha production and collagen-induced arthritis by adenosine receptor agonists. Br J Pharmacol 125:379–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thacker MA, Clark AK, Marchand F et al (2007) Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg 105:838–847

    Article  PubMed  Google Scholar 

  • Thiele A, Kronstein R, Wetzel A et al (2004) Regulation of adenosine receptor subtypes during cultivation of human monocytes: role of receptors in preventing lipopolysaccharide-triggered respiratory burst. Infect Immun 72:1349–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  • van der Hoeven D, Wan TC, Auchampach JA (2008) Activation of the A(3) adenosine receptor suppresses superoxide production and chemotaxis of mouse bone marrow neutrophils. Mol Pharmacol 74:685–696

    Article  PubMed  CAS  Google Scholar 

  • van der Hoeven D, Wan TC, Gizewski ET et al (2011) A role for the low-affinity A2B adenosine receptor in regulating superoxide generation by murine neutrophils. J Pharmacol Exp Ther 338:1004–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams AJ, Cronstein BN (2012) The effect of A(2A) adenosine receptor activation on C-C chemokine receptor 7 expression in human THP1 macrophages during inflammation. Inflammation 35:614–622

    Article  PubMed  CAS  Google Scholar 

  • Yago T, Tsukamoto H, Liu Z et al (2015) Multi-inhibitory effects of A2A adenosine receptor signaling on neutrophil adhesion under flow. J Immunol 195:3880–3889

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Day YJ, Toufektsian MC et al (2005) Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111:2190–2197

    Article  PubMed  CAS  Google Scholar 

  • Yip KH, Lau HY, Wise H (2011) Reciprocal modulation of anti-IgE induced histamine release from human mast cells by A(1) and A(2B) adenosine receptors. Br J Pharmacol 164:807–819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zalavary S, Bengtsson T (1998) Adenosine inhibits actin dynamics in human neutrophils: evidence for the involvement of cAMP. Eur J Cell Biol 75:128–139

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Conrad DM, Butler JJ et al (2004) Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3′,5′-monophosphate and phosphatases. J Immunol 173:932–944

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Antonioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonioli, L., Fornai, M., Blandizzi, C., Haskó, G. (2018). Adenosine Regulation of the Immune System. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_20

Download citation

Publish with us

Policies and ethics