Skip to main content

Advertisement

Log in

Contribution of PPARα/β/γ, AP-1, importin-α3, and RXRα to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against hypotension, tachycardia, and inflammation in a rat model of septic shock

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

We have previously demonstrated that downregulation of the MyD88/TAK1-dependent signaling pathway associated with increased CYP4A1 expression and 20-HETE formation participates in the protective effect of N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), a 20-HETE mimetic, against vascular hyporeactivity, hypotension, tachycardia, inflammation, and mortality in a rodent model of septic shock. The aim of this study was to determine whether increased renal and cardiovascular expression of PPARα/β/γ and RXRα associated with decreased expression and/or activity of AP-1 and importin-α3 participates in the protective effect of 5,14-HEDGE in response to systemic administration of lipopolysaccharide (LPS).

Methods

Conscious male Wistar rats received saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. Separate groups of LPS-treated rats were given 5,14-HEDGE (30 mg/kg) 1 h after injection of saline or LPS. The rats were killed 4 h after saline or LPS administration and the kidney, heart, thoracic aorta, and superior mesenteric artery were collected for measurement of protein expression.

Results

Blood pressure fell by 33 mmHg and heart rate rose by 72 beats/min at 4 h after LPS administration. In LPS-treated rats, tissue protein expressions of cytosolic/nuclear PPARα/β/γ and nuclear RXRα, in addition to nuclear translocation of PPARα/β/γ proteins, were decreased, while cytosolic/nuclear AP-1 subunit c-jun/phosphorylated c-jun and importin-α3 protein expression as well as their nuclear translocation were increased. The LPS-induced changes were prevented by 5,14-HEDGE.

Conclusions

The results suggest that an increase in the expression of PPARα/β/γ and RXRα as well as a decrease in AP-1 and importin-α3 expression/activity participates in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation during endotoxemia and thus have a beneficial effect in septic shock treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

15d-PGJ2 :

15-Deoxy-Δ12,14-prostaglandin J2

20-HETE:

20-Hydroxyeicosatetraenoic acid

5,14-HEDGE:

N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine

AP:

Activator protein

BSA:

Bovine serum albumin

CD:

Cluster of differentiation

COX:

Cyclooxygenase

Crm:

Chromosome region maintenance

CYP:

Cyctochrome P450

DNA:

Deoxyribonucleic acid

ERK:

Extracellular signal-regulated kinase

HR:

Heart rate

Ig:

Immunoglobulin

IKK:

IκB kinase

IκB:

Inhibitor of κB

IL:

Interleukin

i.p.:

Intraperitoneally

IL:

Interleukin

IRAK:

Interleukin-1 receptor-associated kinase

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

MAP:

Mean arterial pressure

MAPK:

Mitogen-activated protein kinase

MD:

Myeloid differentiation protein

MEK:

Mitogen-activated protein kinase kinase

MKK:

Mitogen-activated protein kinase kinase

miRNA:

Microribonucleic acid

MyD88:

Myeloid differentiation factor 88

NADPH:

Nicotinamide adenine dinucleotide phosphate

NES:

Nuclear export signals

NF-κB:

Nuclear factor-κB

NFAT:

Nuclear factor of activated T cells

NLS:

Nuclear localization signals

NO:

Nitric oxide

PG:

Prostaglandin

PPAR:

Peroxisome proliferator-activated receptor

PPREs:

Peroxisome proliferator-activated receptor response elements

RXR:

Retinoid X receptor

s.c.:

Subcutaneously

SEM:

Standard error of means

STAT:

Signal transducer and activator of transcription

TAK:

Transforming growth factor-activated kinase

TIRAP:

Toll-interleukin-1 receptor domain containing adaptor protein

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TRAF:

TNF receptor-associated factor

References

  1. Elshenawy OH, Anwar-Mohamed A, El-Kadi AO. 20-Hydroxyeicosatetraenoic acid is a potential therapeutic target in cardiovascular diseases. Curr Drug Metab. 2013;14:706–19.

    Article  CAS  PubMed  Google Scholar 

  2. Fan F, Muroya Y, Roman RJ. Cytochrome P450 eicosanoids in hypertension and renal disease. Curr Opin Nephrol Hypertens. 2015;24:37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–85.

    Article  CAS  PubMed  Google Scholar 

  4. Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, Buharalioglu CK, Sahan-Firat S, Schunck WH, Falck JR, Malik KU. A novel treatment strategy for sepsis and septic shock based on the interactions between prostanoids, nitric oxide, and 20-hydroxyeicosatetraenoic acid. Antiinflamm Antiallergy Agents Med Chem. 2012;11:121–50.

    Article  CAS  PubMed  Google Scholar 

  5. Wu CC, Gupta T, Garcia V, Ding Y, Schwartzman ML. 20-HETE and blood pressure regulation: clinical implications. Cardiol Rev. 2014;22:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Escalante B, Omata K, Sessa W, Lee SG, Falck JR, Schwartzman ML. 20-hydroxyeicosatetraenoic acid is an endothelium-dependent vasoconstrictor in rabbit arteries. Eur J Pharmacol. 1993;235:1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Randriamboavonjy V, Busse R, Fleming I. 20-HETE-induced contraction of small coronary arteries depends on the activation of Rho-kinase. Hypertension. 2003;41:801–6.

    Article  CAS  PubMed  Google Scholar 

  8. Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, Roman RJ. 20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K+ channel in renal arterioles. Am J Physiol. 1996;270:R228–37.

    CAS  PubMed  Google Scholar 

  9. Carroll MA, Capparelli MF, Doumand AB, Cheng MK, Jiang H, McGiff JC. Renal vasoactive eicosanoids: interactions between cytochrome P450 and cyclooxygenase metabolites during salt depletion. Am J Hypertens. 2001;14:159A.

    Article  Google Scholar 

  10. Pratt PF, Falck JR, Reddy KM, Kurian JB, Campbell WB. 20-HETE relaxes bovine coronary arteries through the release of prostacyclin. Hypertension. 1998;31:237–41.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng J, Wu CC, Gotlinger KH, Zhang F, Falck JR, Narsimhaswamy D, Schwartzman ML. 20-hydroxy-5,8,11,14-eicosatetraenoic acid mediates endothelial dysfunction via IkappaB kinase-dependent endothelial nitric-oxide synthase uncoupling. J Pharmacol Exp Ther. 2010;332:57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishizuka T, Cheng J, Singh H, Vitto MD, Manthati VL, Falck JR, Laniado-Schwartzman M. 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-κB activation and the production of inflammatory cytokines in human endothelial cells. J Pharmacol Exp Ther. 2008;324:103–10.

    Article  CAS  PubMed  Google Scholar 

  13. Toth P, Csiszar A, Sosnowska D, Tucsek Z, Cseplo P, Springo Z, Tarantini S, Sonntag WE, Ungvari Z, Koller A. Treatment with the cytochrome P450 ω-hydroxylase inhibitor HET0016 attenuates cerebrovascular inflammation, oxidative stress and improves vasomotor function in spontaneously hypertensive rats. Br J Pharmacol. 2013;168:1878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anwar-mohamed A, Zordoky BN, Aboutabl ME, El-Kadi AO. Alteration of cardiac cytochrome P450-mediated arachidonic acid metabolism in response to lipopolysaccharide-induced acute systemic inflammation. Pharmacol Res. 2010;61:410–8.

    Article  CAS  PubMed  Google Scholar 

  15. Theken KN, Deng Y, Kannon MA, Miller TM, Poloyac SM, Lee CR. Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism. Drug Metab Dispos. 2011;39:22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bernard NJ, O’Neill LA. Mal, more than a bridge to MyD88. IUBMB Life. 2013;65:777–86.

    Article  CAS  PubMed  Google Scholar 

  17. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010;1799:775–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Landström M. The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol. 2010;42:585–9.

    Article  PubMed  Google Scholar 

  19. Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol. 2006;290:L622–45.

    CAS  Google Scholar 

  20. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–51.

    Article  CAS  PubMed  Google Scholar 

  21. Haddad JJ, Abdel-Karim NE. NF-κB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol. 2011;271:5–14.

    Article  CAS  PubMed  Google Scholar 

  22. Ferreira AM, Minarrieta L, Lamas Bervejillo M, Rubbo H. Nitro-fatty acids as novel electrophilic ligands for peroxisome proliferator-activated receptors. Free Radic Biol Med. 2012;53:1654–63.

    Article  CAS  PubMed  Google Scholar 

  23. Grygiel-Gorniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications-a review. Nutr J. 2014;13(17):23.

    Google Scholar 

  24. Neher MD1, Weckbach S, Huber-Lang MS, Stahel PF. New insights into the role of peroxisome proliferator-activated receptors in regulating the inflammatory response after tissue injury. PPAR Res. 2012;2012:728461.

  25. Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: challenges and opportunities in development of PPAR agonists. Mol Endocrinol. 2014;28:1756–68.

    Article  PubMed  Google Scholar 

  26. von Knethen A, Soller M, Brune B. Peroxisome proliferator-activated receptor gamma (PPAR gamma) and sepsis. Arch Immunol Ther Exp. 2007;55:19–25.

    Article  Google Scholar 

  27. Aggarwal A, Agrawal DK. Importins and exportins regulating allergic immune responses. Mediators Inflamm. 2014;2014:476357.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J. 2015;282:445–62.

    Article  CAS  PubMed  Google Scholar 

  29. Tran EJ, King MC, Corbett AH. Macromolecular transport between the nucleus and the cytoplasm: advances in mechanism and emerging links to disease. Biochim Biophys Acta. 2014;1843:2784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cuez T, Korkmaz B, Buharalioglu CK, Sahan-Firat S, Falck J, Malik KU, Tunctan B. A synthetic analogue of 20-HETE, 5,14-HEDGE, reverses endotoxin-induced hypotension via increased 20-HETE levels associated with decreased iNOS protein expression and vasodilator prostanoid production in rats. Basic Clin Pharmacol. 2010;106:378–88.

    Article  CAS  Google Scholar 

  31. Sari AN, Korkmaz B, Serin MS, Kacan M, Unsal D, Buharalioglu CK, Sahan Firat S, Manthati VL, Falck JR, Malik KU, Tunctan B. Effects of 5,14-HEDGE, a 20-HETE mimetic, on lipopolysaccharide-induced changes in MyD88/TAK1/IKKβ/IκB-α/NF-κB pathway and circulating miR-150, miR-223, and miR-297 levels in a rat model of septic shock. Inflam Res. 2014;63:741–56.

  32. Tunctan B, Korkmaz B, Buharalioglu CK. Sahan Firat S, Anjaiah S, Falck J, Roman RJ, Malik KU. A 20-HETE agonist, N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine, opposes the fall in blood pressure and vascular reactivity in endotoxin-treated rats. Shock. 2008;30:329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, Buharalioglu CK, Sahan-Firat S, Cuez T, Schunck WH, Manthati VL, Falck JR, Malik KU. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91phox to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide. 2013;33:18–41.

    Article  CAS  PubMed  Google Scholar 

  34. Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, Buharalioglu CK, Sahan-Firat S, Cuez T, Schunck WH, Falck JR, Malik KU. 5,14-HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation. Prostaglandins Other Lipid Mediat. 2013;102–103:31–41.

    Article  PubMed  Google Scholar 

  35. Tunctan B, Korkmaz B, Yildirim H, Tamer L, Atik U, Buharalioglu C. Increased production of nitric oxide contributes to renal oxidative stress in endotoxemic rat. Am J Infect Dis. 2005;1:111–5.

    Article  CAS  Google Scholar 

  36. Gadjeva M, Tomczak MF, Zhang M, Wang YY, Dull K, Rogers AB, Erdman SE, Fox JG, Carroll M, Horwitz BH. A role for NF-kappa B subunits p50 and p65 in the inhibition of lipopolysaccharide-induced shock. J Immunol. 2004;173:5786–93.

    Article  CAS  PubMed  Google Scholar 

  37. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109:S81–96.

    Article  CAS  PubMed  Google Scholar 

  38. Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem. 2002;277:10842–51.

    Article  CAS  PubMed  Google Scholar 

  39. Huang TT, Kudo N, Yoshida M, Miyamoto S. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc Natl Acad Sci USA. 2000;97:1014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson C, Van Antwerp D, Hope TJ. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. EMBO J. 1999;18:6682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shirakawa F, Mizel SB. In vitro activation and nuclear translocation of NF-kappa B catalyzed by cyclic AMP-dependent protein kinase and protein kinase C. Mol Cell Biol. 1989;9:2424–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fagerlund R, Melén K, Cao X, Julkunen I. NF-kappaB p52, RelB and c-Rel are transported into the nucleus via a subset of importin alpha molecules. Cell Signal. 2008;20:1442–51.

    Article  CAS  PubMed  Google Scholar 

  43. Fagerlund R, Kinnunen L, Köhler M, Julkunen I, Melen K. NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem. 2005;280:15942–51.

    Article  CAS  PubMed  Google Scholar 

  44. Zerfaoui M, Errami Y, Naura AS, Suzuki Y, Kim H, Ju J, Liu T, Hans CP, Kim JG, Abd Elmageed ZY, Koochekpour S, Catling A, Boulares AH. Poly(ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J Immunol. 2010;185:1894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iida A, Yoshidome H, Shida T, Takano S, Takeuchi D, Kimura F, Shimizu H, Ohtsuka M, Miyazaki M. Hepatocyte nuclear factor-kappa beta (NF-kappaB) activation is protective but is decreased in the cholestatic liver with endotoxemia. Surgery. 2010;148:477–89.

    Article  PubMed  Google Scholar 

  46. Jiang Q, Liu P, Wu X, Liu W, Shen X, Lan T, Xu S, Peng J, Xie X, Huang H. Berberine attenuates lipopolysaccharide-induced extracellular matrix accumulation and inflammation in rat mesangial cells: involvement of NF-κB signaling pathway. Mol Cell Endocrinol. 2011;331:34–40.

    Article  CAS  PubMed  Google Scholar 

  47. Kwon WY, Suh GJ, Kim KS, Kwak YH. Niacin attenuates lung inflammation and improves survival during sepsis by downregulating the nuclear factor-κB pathway. Crit Care Med. 2011;39:328–34.

    Article  CAS  PubMed  Google Scholar 

  48. Meyer-Schwesinger C, Dehde S, von Ruffer C, Gatzemeier S, Klug P, Wenzel UO, Stahl RA, Thaiss F, Meyer TN. Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling. Am J Physiol. 2009;296:F1088–99.

    CAS  Google Scholar 

  49. Zhang X, Song Y, Ci X, An N, Ju Y, Li H, Wang X, Han C, Cui J, Deng X. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm Res. 2008;57:524–9.

    Article  CAS  PubMed  Google Scholar 

  50. Mandard S, Patsouris D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res. 2013;2013:613864.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ishizuka T, Ito O, Tan L, Ogawa S, Kohzuki M, Omata K, Takeuchi K, Ito S. Regulation of cytochrome P-450 4A activity by peroxisome proliferator-activated receptors in the rat kidney. Hypertens Res. 2003;26:929–36.

    Article  CAS  PubMed  Google Scholar 

  52. Ito O, Nakamura Y, Tan L, Ishizuka T, Sasaki Y, Minami N, Kanazawa M, Ito S, Sasano H, Kohzuki M. Expression of cytochrome P-450 4 enzymes in the kidney and liver: regulation by PPAR and species-difference between rat and human. Mol Cell Biochem. 2006;284:141–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lee DL, Wilson JL, Duan R, Hudson T, El-Marakby A. Peroxisome proliferator-activated receptor-α activation decreases mean arterial pressure, plasma interleukin-6, and COX-2 while increasing renal CYP4A expression in an acute model of DOCA-salt hypertension. PPAR Res. 2011;2011:502631.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ng VY, Huang Y, Reddy LM, Falck JR, Lin ET, Kroetz DL. Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor alpha. Drug Metab Dispos. 2007;35:1126–34.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou Y, Luo P, Chang HH, Huang H, Yang T, Dong Z, Wang CY, Wang MH. Clofibrate attenuates blood pressure and sodium retention in DOCA-salt hypertension. Kidney Int. 2008;74:1040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang CJ, Tseng CP, Yang CM, Ma YH. 20-Hydroxyeicosatetraenoic acid inhibits ATP-induced COX-2 expression via peroxisome proliferator activator receptor-α in vascular smooth muscle cells. Br J Pharmacol. 2011;163:815–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barclay TB, Peters JM, Sewer MB, Ferrari L, Gonzalez FJ, Morgan ET. Modulation of cytochrome P-450 gene expression in endotoxemic mice is tissue specific and peroxisome proliferator-activated receptor-alpha dependent. J Pharmacol Exp Ther. 1999;290:1250–7.

    CAS  PubMed  Google Scholar 

  58. Iwamoto F, Umemoto T, Motojima K, Fujiki Y. Nuclear transport of peroxisome-proliferator activated receptor & alpha. J Biochem. 2011;149:311–9.

    Article  CAS  PubMed  Google Scholar 

  59. Umemoto T, Fujiki Y. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors. PPARα and PPARγ. Genes Cells. 2012;17:576–96.

    Article  CAS  PubMed  Google Scholar 

  60. von Knethen A, Tzieply N, Jennewein C, Brüne B. Casein-kinase-II-dependent phosphorylation of PPARgamma provokes CRM1-mediated shuttling of PPARgamma from the nucleus to the cytosol. J Cell Sci. 2010;123:192–201.

    Article  Google Scholar 

  61. Forwood JK, Lam MH, Jans DA. Nuclear import of Creb and AP-1 transcription factors requires importin-beta 1 and Ran but is independent of importin-alpha. Biochemistry. 2001;40:5208–17.

    Article  CAS  PubMed  Google Scholar 

  62. Schreck I, Al-Rawi M, Mingot JM, Scholl C, Diefenbacher ME, O’Donnell P, Bohmann D, Weiss C. c-Jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK. Biochem Biophys Res Commun. 2011;407:735–40.

    Article  CAS  PubMed  Google Scholar 

  63. Waldmann I, Wälde S, Kehlenbach RH. Nuclear import of c-Jun is mediated by multiple transport receptors. J Biol Chem. 2007;282:27685–892.

    Article  CAS  PubMed  Google Scholar 

  64. Burgermeister E, Seger R. MAPK kinases as nucleo-cytoplasmic shuttles for PPARgamma. Cell Cycle. 2007;6:1539–48.

    Article  CAS  PubMed  Google Scholar 

  65. Ramer R, Walther U, Borchert P, Laufer S, Linnebacher M, Hinz B. Induction but not inhibition of COX-2 confers human lung cancer cell apoptosis by celecoxib. J Lipid Res. 2013;54:3116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen HH, Chen TW, Lin H. Pravastatin attenuates carboplatin-induced nephrotoxicity in rodents via peroxisome proliferator-activated receptor alpha-regulated heme oxygenase-1. Mol Pharmacol. 2010;78:36–45.

    Article  CAS  PubMed  Google Scholar 

  67. Shibuya A, Wada K, Nakajima A, Saeki M, Katayama K, Mayumi T, Kadowaki T, Niwa H, Kamisaki Y. Nitration of PPARgamma inhibits ligand-dependent translocation into the nucleus in a macrophage-like cell line, RAW 264. FEBS Lett. 2002;525:43–7.

    Article  CAS  PubMed  Google Scholar 

  68. Xue H, Chen B, Fan Y, Palikhe M, Li Y. The inhibitory effect of polypeptide cSN50 on alcoholic hepatic injuries through blocking the binding of NF-κB to importin α. Scand J Gastroenterol. 2011;46:931–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by grants from Mersin University (BAP-SBE FB [SPS] 2014-3 YL, the Robert A. Welch Foundation (I-0011), and NIH (HL111392). The results of this study were included in the Master’s Thesis of Pharm. M.S. Sefika Pinar Senol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Tunctan.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senol, S.P., Temiz, M., Guden, D.S. et al. Contribution of PPARα/β/γ, AP-1, importin-α3, and RXRα to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against hypotension, tachycardia, and inflammation in a rat model of septic shock. Inflamm. Res. 65, 367–387 (2016). https://doi.org/10.1007/s00011-016-0922-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0922-5

Keywords

Navigation