Skip to main content
Log in

Pgc-1α Promotes Phosphorylation, Inflammation, and Apoptosis in H9c2 Cells During the Early Stage of Lipopolysaccharide Induction

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cardiac dysfunction in severe sepsis is associated with increased mortality. However, the molecular mechanisms underlying septic heart dysfunction remain unclear. Expression of peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc-1α), concentrations of inflammatory factors, and activation of the nuclear factor kappa-B (NF-κB) signaling pathway were examined in H9c2 cells after a 24-h lipopolysaccharide (LPS) stimulation period using qPCR, enzyme-linked immunosorbent assays (ELISAs), and western blots (WBs), respectively. Pgc-1α was overexpressed and suppressed in cells using a lentivirus vector and siRNA, respectively. The effects of Pgc-1α dysfunction on the release of inflammatory factors and apoptosis were analyzed. Pgc-1α expression was increased after LPS induction for 0.5 h and returned to the pre-induction level at 2 h. Levels of IL-1β, IL-6, and TNF-α increase after LPS induction for 0.5 h and accumulated in the culture supernatants over time. The WBs revealed the highest Pgc-1α and phospho (p)-p65 protein levels after LPS induction for 0.5 h, followed by a decrease; moreover, the cleaved-caspase-3 level increased after LPS induction for 0.5 h and increased gradually thereafter. A functional analysis of Pgc-1α revealed that overexpression of this protein enhanced LPS-induced inflammatory factors and p-p65 levels and inhibited apoptosis during the early stage after LPS induction (0.5 and 4 h). In contrast, the inhibition of Pgc-1α expression inhibited the LPS expression–associated increases in inflammatory factors and p-p65 and promoted apoptosis. Pgc-1α promoted LPS-induced p65 phosphorylation and inflammatory factor release while inhibiting apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Flynn, A., B. Chokkalingam Mani, and P.J. Mather. 2010. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Failure Reviews 15 (6): 605–611.

    Article  Google Scholar 

  2. Pulido, J.N., B. Afessa, M. Masaki, T. Yuasa, S. Gillespie, V. Herasevich, D.R. Brown, and J.K. Oh. 2012. Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clinic Proceedings 87 (7): 620–628.

    Article  Google Scholar 

  3. Li, L., B.C. Hu, C.Q. Chen, S.J. Gong, Y.H. Yu, H.W. Dai, and J. Yan. 2013. Role of mitochondrial damage during cardiac apoptosis in septic rats. Chinese Medical Journal 126 (10): 1860–1866.

    CAS  PubMed  Google Scholar 

  4. Blanco, J., A. Muriel-Bombin, V. Sagredo, F. Taboada, F. Gandia, L. Tamayo, J. Collado, A. Garcia-Labattut, D. Carriedo, M. Valledor, M. De Frutos, M.J. Lopez, A. Caballero, J. Guerra, B. Alvarez, A. Mayo, and J. Villar. 2008. Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Critical Care 12 (6): R158.

    Article  Google Scholar 

  5. Granton, J.T., C.M. Goddard, M.F. Allard, S. van Eeden, and K.R. Walley. 1997. Leukocytes and decreased left-ventricular contractility during endotoxemia in rabbits. American Journal of Respiratory and Critical Care Medicine 155 (6): 1977–1983.

    Article  CAS  Google Scholar 

  6. Herbertson, M.J., H.A. Werner, and K.R. Walley. 1996. Nitric oxide synthase inhibition partially prevents decreased LV contractility during endotoxemia. The American Journal of Physiology 270 (6 Pt 2): H1979–H1984.

    CAS  PubMed  Google Scholar 

  7. Wei, W.Y., Z.G. Ma, N. Zhang, S.C. Xu, Y.P. Yuan, X.F. Zeng, and Q.Z. Tang. 2018. Overexpression of CTRP3 protects against sepsis-induced myocardial dysfunction in mice. Molecular and Cellular Endocrinology 476: 27–36.

    Article  CAS  Google Scholar 

  8. Neviere, R., H. Fauvel, C. Chopin, P. Formstecher, and P. Marchetti. 2001. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. American Journal of Respiratory and Critical Care Medicine 163 (1): 218–225.

    Article  CAS  Google Scholar 

  9. Wang, Y., X. Yu, F. Wang, Y. Wang, Y. Wang, H. Li, X. Lv, D. Lu, and H. Wang. 2013. Yohimbine promotes cardiac NE release and prevents LPS-induced cardiac dysfunction via blockade of presynaptic alpha2A-adrenergic receptor. PLoS One 8 (5): e63622.

    Article  CAS  Google Scholar 

  10. O'Sullivan, A.W., J.H. Wang, and H.P. Redmond. 2009. NF-kappaB and p38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy. The Journal of Surgical Research 152 (1): 46–53.

    Article  CAS  Google Scholar 

  11. Fitzgerald, K.A., E.M. Palsson-McDermott, A.G. Bowie, C.A. Jefferies, A.S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M.T. Harte, D. McMurray, D.E. Smith, J.E. Sims, T.A. Bird, and L.A. O'Neill. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413 (6851): 78–83.

    Article  CAS  Google Scholar 

  12. Tran, M., D. Tam, A. Bardia, M. Bhasin, G.C. Rowe, A. Kher, Z.K. Zsengeller, M.R. Akhavan-Sharif, E.V. Khankin, M. Saintgeniez, S. David, D. Burstein, S.A. Karumanchi, I.E. Stillman, Z. Arany, and S.M. Parikh. 2011. PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in mice. The Journal of Clinical Investigation 121 (10): 4003–4014.

    Article  CAS  Google Scholar 

  13. Alvarez-Guardia, D., X. Palomer, T. Coll, M.M. Davidson, T.O. Chan, A.M. Feldman, J.C. Laguna, and M. Vázquez-Carrera. 2010. The p65 subunit of NF-kappaB binds to PGC-1alpha, linking inflammation and metabolic disturbances in cardiac cells. Cardiovascular Research 87 (3): 449–458.

    Article  CAS  Google Scholar 

  14. DeForge, L.E., and D.G. Remick. 1991. Kinetics of TNF, IL-6, and IL-8 gene expression in LPS-stimulated human whole blood. Biochemical and Biophysical Research Communications 174 (1): 18–24.

    Article  CAS  Google Scholar 

  15. Song, R., J. Kim, D. Yu, C. Park, and J. Park. 2012. Kinetics of IL-6 and TNF-alpha changes in a canine model of sepsis induced by endotoxin. Veterinary Immunology and Immunopathology 146 (2): 143–149.

    Article  CAS  Google Scholar 

  16. Takano, H., T. Nagai, M. Asakawa, T. Toyozaki, T. Oka, I. Komuro, T. Saito, and Y. Masuda. 2000. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circulation Research 87 (7): 596–602.

    Article  CAS  Google Scholar 

  17. Planavila, A., R.M. Sanchez, M. Merlos, J.C. Laguna, and M. Vazquez-Carrera. 2005. Atorvastatin prevents peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) downregulation in lipopolysaccharide-stimulated H9c2 cells. Biochimica et Biophysica Acta 1736 (2): 120–127.

    Article  CAS  Google Scholar 

  18. Mootha, V.K., C.M. Lindgren, K.F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M.J. Daly, N. Patterson, J.P. Mesirov, T.R. Golub, P. Tamayo, B. Spiegelman, E.S. Lander, J.N. Hirschhorn, D. Altshuler, and L.C. Groop. 2003. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34 (3): 267–273.

    Article  CAS  Google Scholar 

  19. Shao, D., Y. Liu, X. Liu, L. Zhu, Y. Cui, A. Cui, A. Qiao, X. Kong, Y. Liu, Q. Chen, N. Gupta, F. Fang, and Y. Chang. 2010. PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha. Mitochondrion 10 (5): 516–527.

    Article  CAS  Google Scholar 

  20. Eisele, P.S., S. Salatino, J. Sobek, M.O. Hottiger, and C. Handschin. 2013. The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells. The Journal of Biological Chemistry 288 (4): 2246–2260.

    Article  CAS  Google Scholar 

  21. Arany, Z., H. He, J. Lin, K. Hoyer, C. Handschin, O. Toka, F. Ahmad, T. Matsui, S. Chin, P.H. Wu, I.I. Rybkin, J.M. Shelton, M. Manieri, S. Cinti, F.J. Schoen, R. Bassel-Duby, A. Rosenzweig, J.S. Ingwall, and B.M. Spiegelman. 2005. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metabolism 1 (4): 259–271.

    Article  CAS  Google Scholar 

  22. Fang, W.J., C.J. Wang, Y. He, Y.L. Zhou, X.D. Peng, and S.K. Liu. 2018. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1alpha deacetylation. Acta Pharmacologica Sinica 39 (1): 59–73.

    Article  CAS  Google Scholar 

  23. Cao, J., J.A. McClung, M. Waldman, S.P. Singh, J. Schragenheim, M. Arad, E. Hochhauser, and N. Abraham. 2016. PGC-1α is a critical activator of HO-1 that protects against cardiomyopathy in diabetic mice through recruitment of mitochondrial fusion proteins and function. Hypertension 68 (suppl_1): A024.

    Google Scholar 

  24. Kawamura, N., T. Kubota, S. Kawano, Y. Monden, A.M. Feldman, H. Tsutsui, A. Takeshita, and K. Sunagawa. 2005. Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy. Cardiovascular Research 66 (3): 520–529.

    Article  CAS  Google Scholar 

  25. Liu, H., and S.S. Lee. 2008. Nuclear factor-kappaB inhibition improves myocardial contractility in rats with cirrhotic cardiomyopathy. Liver International 28 (5): 640–648.

    Article  CAS  Google Scholar 

  26. Thomas, C.M., Q.C. Yong, R.M. Rosa, R. Seqqat, S. Gopal, D.E. Casarini, W.K. Jones, S. Gupta, K.M. Baker, and R. Kumar. 2014. Cardiac-specific suppression of NF-kappaB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. American Journal of Physiology. Heart and Circulatory Physiology 307 (7): H1036–H1045.

    Article  CAS  Google Scholar 

  27. Rajesh, M., P. Mukhopadhyay, S. Batkai, V. Patel, K. Saito, S. Matsumoto, Y. Kashiwaya, B. Horvath, B. Mukhopadhyay, L. Becker, G. Hasko, L. Liaudet, D.A. Wink, A. Veves, R. Mechoulam, and P. Pacher. 2010. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. Journal of the American College of Cardiology 56 (25): 2115–2125.

    Article  CAS  Google Scholar 

  28. Hall, G., I.S. Singh, L. Hester, J.D. Hasday, and T.B. Rogers. 2005. Inhibitor-kappaB kinase-beta regulates LPS-induced TNF-alpha production in cardiac myocytes through modulation of NF-kappaB p65 subunit phosphorylation. American Journal of Physiology. Heart and Circulatory Physiology 289 (5): H2103–H2111.

    Article  CAS  Google Scholar 

  29. Tien, Y.C., J.Y. Lin, C.H. Lai, C.H. Kuo, W.Y. Lin, C.H. Tsai, F.J. Tsai, Y.C. Cheng, W.H. Peng, and C.Y. Huang. 2010. Carthamus tinctorius L. prevents LPS-induced TNFalpha signaling activation and cell apoptosis through JNK1/2-NFkappaB pathway inhibition in H9c2 cardiomyoblast cells. Journal of Ethnopharmacology 130 (3): 505–513.

    Article  Google Scholar 

  30. Kumar, S. 2007. Caspase function in programmed cell death. Cell Death and Differentiation 14 (1): 32–43.

    Article  CAS  Google Scholar 

  31. Communal, C., M. Sumandea, P. de Tombe, J. Narula, R.J. Solaro, and R.J. Hajjar. 2002. Functional consequences of caspase activation in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America 99 (9): 6252–6256.

    Article  CAS  Google Scholar 

  32. Neviere, R., S.M. Hassoun, B. Decoster, Y. Bouazza, D. Montaigne, X. Marechal, C. Marciniak, P. Marchetti, and S. Lancel. 2010. Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction. Critical Care Medicine 38 (10): 2031–2036.

    Article  CAS  Google Scholar 

  33. Kumar, A., A. Kumar, P. Michael, D. Brabant, A.M. Parissenti, C.V. Ramana, X. Xu, and J.E. Parrillo. 2005. Human serum from patients with septic shock activates transcription factors STAT1, IRF1, and NF-kappaB and induces apoptosis in human cardiac myocytes. The Journal of Biological Chemistry 280 (52): 42619–42626.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Basic Research Project of Shenzhen Science and technology from Shenzhen Science and Technology Innovation Commission [JCYJ20160425104402559].

Author information

Authors and Affiliations

Authors

Contributions

DL conceived and designed the study, and critically revised the manuscript. QH performed the experiments, analyzed the data, and drafted the manuscript. CC, YH, ZH, JZ, and XZ participated in study design, study implementation, and manuscript revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to De-Hong Liu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Liu, DH., Chen, CF. et al. Pgc-1α Promotes Phosphorylation, Inflammation, and Apoptosis in H9c2 Cells During the Early Stage of Lipopolysaccharide Induction. Inflammation 44, 1771–1781 (2021). https://doi.org/10.1007/s10753-021-01453-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01453-8

KEY WORDS

Navigation