Skip to main content
Log in

Anti-inflammatory effects of ivermectin in mouse model of allergic asthma

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background and objective

Asthma is an inflammatory disease of the lungs that is characterised by increased inflammatory cell infiltration into the airways and poor respiratory function. Ivermectin is a semi-synthetic derivative of a family of macrocyclic lactones that shows broad-spectrum anti-parasitic activity. This drug has been shown to possess anti-inflammatory activity, but whether it can be used in asthma treatment has not yet been investigated. In this study, we aimed to investigate the inhibitory effects of ivermectin on allergic asthma symptoms in mice.

Methods and results

We used a mouse asthma model, in which allergic airway inflammation and airway remodelling were induced by ovalbumin (OVA) sensitisation and challenge. Ivermectin or PBS treatment was administered 1 h before OVA challenge. Ivermectin at 2 mg/kg significantly diminished recruitment of immune cells, production of cytokines in the bronchoalveolar lavage fluids and secretion of OVA-specific IgE and IgG1 in the serum. Histological studies indicated that ivermectin suppressed mucus hypersecretion by goblet cells in the airway.

Conclusions

This is the first study to demonstrate that ivermectin is an effective suppressor of inflammation and may be efficacious in the treatment of non-infectious airway inflammatory diseases such as allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BALF:

Bronchoalveolar lavage fluids

Cdyn:

Lung compliance

DEX:

Dexamethasone

H&E:

Hematoxylin and eosin

IVER:

Ivermectin

OVA:

Ovalbumin

PAS:

Periodic acid-Schiff

PBS:

Phosphate-buffered saline

RL:

Airway resistance

References

  1. Elias JA, Lee CG, Zheng T, Ma B, Homer RJ, Zhu Z. New insights into the pathogenesis of asthma. J Clin Invest. 2003;111:291–7.

    PubMed  CAS  Google Scholar 

  2. Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol. 1999;17:255–81.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson GP, Coyle AJ. Th2 and ‘Th2-like’ cells in allergy and asthma: pharmacological perspectives. Trends Pharmacol Sci. 1994;15:324–32.

    Article  PubMed  CAS  Google Scholar 

  4. Braman SS. The global burden of asthma. Chest. 2006;130:4–12.

    Article  Google Scholar 

  5. Bryskier A, Agouridas C, Chantot JF. New medical targets for macrolides. Exp Opin Invest Drugs. 1994;3:405–10.

    Article  CAS  Google Scholar 

  6. Tarayre JP, Aliaga M, Barbara M, Villanova G, Ballester R, Tisne-Versailles J, et al. Cutaneously applied erythromycin base reduces various types of inflammatory reactions in mouse ear. Int J Tiss Reac. 1987;4:77–85.

    Google Scholar 

  7. Mikasa K, Kita E, Sawaki M, Kunimatsu M, Hamada K, Konishi M, et al. The anti-inflammatory effect of erythromycin in zymosan-induced peritonitis of mice. J Antimicrob Chemother. 1992;30:339–48.

    Article  PubMed  CAS  Google Scholar 

  8. Agen C, Danesi R, Blandizzi C, Costa M, Stacchini B, Favini P, et al. Macrolide antibiotics as antiinflammatory agents: roxithromycin in an unexpected role. Agents Actions. 1993;38:85–90.

    Article  PubMed  CAS  Google Scholar 

  9. Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents. 2008;31:12–20.

    Article  PubMed  CAS  Google Scholar 

  10. Hrvačić B, Bošnjak B, Bosnar M, Ferenčić Ž, Glojnarić I, Eraković Haber V. Clarithromycin suppresses airway hyperresponsiveness and inflammation in mouse models of asthma. Eur J Pharmacol. 2009;15:236–43.

    Google Scholar 

  11. Beigelman A, Gunsten S, Mikols CL, Vidavsky I, Cannon CL, Brody SL, et al. Azithromycin attenuates airway inflammation in a noninfectious mouse model of allergic asthma. Chest. 2009;136(2):498–506.

    Article  PubMed  Google Scholar 

  12. Caumes E, Danis M. New indications of ivermectin. Rev Med Interne. 2001;22:379–84.

    Article  PubMed  CAS  Google Scholar 

  13. Stankiewicz M, Cabaj W, Jonas WE, Moore LG, Millar K, Ng Chie W. Influence of ivermectin on cellular and humoral immune responses of lambs. Vet Immunol Immunopathol. 1995;44:347–58.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang X, Song Y, Xiong H, Ci X, Li H, Yu L, et al. Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. Int J Immunopharmacol. 2009;9:354–9.

    Article  CAS  Google Scholar 

  15. Zhang X, Song Y, Ci X, An N, Ju Y, Li H, et al. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm Res. 2008;57:524–9.

    Article  PubMed  CAS  Google Scholar 

  16. Van Rijt LS, Kuipers H, Vos N, Hijdra D, Hoogsteden HC, Lambrecht BN. A rapid flow cytometric method for determining the cellular composition of bronchoalveolar lavage fluid cells in mouse models of asthma. J Immunol Methods. 2004;288:111–21.

    Article  PubMed  Google Scholar 

  17. Zhou J, Kang Z, Xie Q, Liu C, Lou S, Chen Y, et al. Rapid nongenomic effects of glucocorticoids on allergic asthma reaction in the guinea pig. J Endocrinol. 2003;177:R1–4.

    Article  PubMed  CAS  Google Scholar 

  18. Pene J, Rousset F, Briere F, Chretien I, Bonnefoy JY, Spits H, et al. IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons a, g and prostaglandin E2. Proc Nat Acad Sci USA. 1988;85:6880–4.

    Article  PubMed  CAS  Google Scholar 

  19. Umetsu DT, DeKruyff RH. TH1 and TH2 CD4+ cells in human allergic diseases. J Allergy Clin Immunol. 1997;100:1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Corry DB, Grunig G, Hadeiba H, Kurup VP, Warnock ML, Sheppard D, et al. Requirementsfor allergen-induced airway hyperreactivity in T and B cell-deficient mice. Mol Med. 1998;4:344–55.

    Article  PubMed  CAS  Google Scholar 

  21. Curtis JL, Byrd PK, Warnock ML, Kaltreider HB. Requirement of CD4-positive T cells for cellular recruitment to the lungs of mice in response to a particulate intratracheal antigen. J Clin Invest. 1991;88:1244–54.

    Article  PubMed  CAS  Google Scholar 

  22. Kips JC. Cytokines in asthma. Eur Respir J. 2001;18:24–33.

    Google Scholar 

  23. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004;202:175–90.

    Article  PubMed  CAS  Google Scholar 

  24. Ngoc LP, Gold DR, Tzianabos AO, Weiss ST, Celedon JC. Cytokines, allergy, and asthma. Curr Opin Allergy Clin Immunol. 2005;5:161–6.

    Article  PubMed  CAS  Google Scholar 

  25. Wills-Karp M, Luyimbazi J, Xu X, Schofield B. Interleukin-13: central mediator of allergic asthma. Science. 1998;282:2258–61.

    Article  PubMed  CAS  Google Scholar 

  26. Purkerson J, Isakson P. A two-signal model for regulation of immunoglobulin isotype switching. FASEB J. 1992;6:3245–52.

    PubMed  CAS  Google Scholar 

  27. Kimber I, Stone S, Dearman RJ. Assessment of the inherent allergenic potential of proteins in mice. Environ Health Perspect. 2003;111:227–31.

    Article  PubMed  CAS  Google Scholar 

  28. Abu-Ghazaleh RI, Kita H, Gleich GJ. Eosinophil activation and function in health and disease. Immunol Ser. 1992;57:137–67.

    PubMed  CAS  Google Scholar 

  29. Coffman RL, Seymour BW, Hudak S, Jackson J, Rennick D. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science. 1898;245:308–10.

    Article  Google Scholar 

  30. Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, et al. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity. 1996;4:15–24.

    Article  PubMed  CAS  Google Scholar 

  31. Lee JJ, McGarry MP, Farmer SC, Denzler KL, Larson KA, Carrigan PE, et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med. 1997;185:2143–56.

    Article  PubMed  CAS  Google Scholar 

  32. Fostera PS, Martinez-Moczygembab M, Hustonb DP, Corry DB. Interleukins-4, -5, and -13: emerging therapeutic targets in allergic disease. Pharmacol Ther. 2002;94:253–64.

    Article  Google Scholar 

  33. Toelle BG, Peat JK, Salome CM. Toward a definition of asthma for epidemiology. Am Rev Respir Dis. 1992;146:633–7.

    PubMed  CAS  Google Scholar 

  34. Peat J, Toelle B, Salome C. Predictive nature of bronchial responsiveness and respiratory symptoms in a one year cohort study of Sydney schoolchildren. Eur Respir J. 1993;6:662–9.

    PubMed  CAS  Google Scholar 

  35. Zhu Z, Homer RJ, Wang Z. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersesretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103:779–88.

    Article  PubMed  CAS  Google Scholar 

  36. Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L. Redox regulation of NF-kappa B activation. Free Radic Biol Med. 1997;22:1115–26.

    Article  PubMed  Google Scholar 

  37. Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem. 1998;273:3285–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuming Deng.

Additional information

Responsible Editor: Michael Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Ci, X., Chen, N. et al. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm. Res. 60, 589–596 (2011). https://doi.org/10.1007/s00011-011-0307-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0307-8

Keywords

Navigation