Skip to main content

Advertisement

Log in

The Immunotherapeutic Role of Bacterial Lysates in a Mouse Model of Asthma

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

Asthma is the most common chronic lower respiratory disease in childhood throughout the world. Recurrent respiratory tract infections in young children, especially viral infections, are the major cause of acute asthmatic exacerbations and contribute to development of asthma. Bacterial extracts have been used to improve the immune defenses of the respiratory tract. However, seldom studies have examined the effect of bacterial lysates on childhood asthma. In this study, we examined whether bacterial lysates (OM-85) will improve symptoms of asthmatic mice via modulation of the immune response.

Methods

Asthmatic mice models were established with OVA challenge and treated with oral administration of Broncho-Vaxom (OM-85). Next, infiltrations of inflammatory cells including eosinophil and neutrophils were examined. Pulmonary tissues in asthmatic mice models were analyzed by hematoxylin and eosin (HE) staining. The levels of Th1/Th2-typed cytokines in bronchoalveolar lavage fluid (BALF) of asthmatic mice models were examined by enzyme-linked immunosorbent assay.

Results

Compared to control group, we found significant reduction of airway wall thickness, luminal stenosis, and mucus plug formation in asthmatic mice models after oral administration of OM-85. The infiltrations of eosinophil were also significantly decreased in BALF in asthmatic mice models. Oral administration of OM-85 was shown to suppress Th2-type cytokine levels.

Conclusion

Our findings provide evidence that oral administration of OM-85 is capable of attenuating airway inflammation in asthmatic mice models. Oral administration of OM-85 may have a positive impact in terms of asthma severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kusel MM, de Klerk NH, Kebadze T et al (2007) Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J Allergy Clin Immunol 119(5):1105–1110

    Article  PubMed  Google Scholar 

  2. Sly PD, Kusel M, Holt PG (2010) Do early-life viral infections cause asthma? J Allergy Clin Immunol 125(6):1202–1205

    Article  CAS  PubMed  Google Scholar 

  3. Jackson DJ, Gangnon RE, Evans MD et al (2008) Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 178(7):667–672

    Article  PubMed  PubMed Central  Google Scholar 

  4. Murray CS, Poletti G, Kebadze T et al (2006) Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax 61(5):376–382

    Article  CAS  PubMed  Google Scholar 

  5. Heymann PW, Carper HT, Murphy DD et al (2004) Viral infections in relation to age, atopy, and season of admission among children hospitalized for wheezing. J Allergy Clin Immunol 114(2):239–247

    Article  PubMed  Google Scholar 

  6. Inoue Y, Shimojo N (2013) Epidemiology of virus-induced wheezing/asthma in children. Front Microbiol 16(4):391

    Google Scholar 

  7. Jackson DJ, Lemanske RF Jr (2010) The role of respiratory virus infections in childhood asthma inception. Immunol Allergy Clin N Am 30(4):513–522

    Article  Google Scholar 

  8. Linder JE, Kraft DC, Mohamed Y et al (2013) Human rhinovirus C: age, season, and lower respiratory illness over the past 3 decades. J Allergy Clin Immunol 131(1):69–77

    Article  PubMed  Google Scholar 

  9. Forno E, Celedón JC (2012) Predicting asthma exacerbations in children. Curr Opin Pulm Med 18(1):63–69

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ahanchian H, Jones CM, Chen YS et al (2012) Respiratory viral infections in children with asthma: do they matter and can we prevent them? BMC Pediatr 13(12):147

    Google Scholar 

  11. Wu P, Hartert TV (2011) Evidence for a causal relationship between respiratory syncytial virus infection and asthma. Expert Rev Anti Infect Ther 9(9):731–745

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gern JE (2009) Rhinovirus and the initiation of asthma. Curr Opin Allergy Clin Immunol 9(1):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Benedetto F, Sevieri G (2013) Prevention of respiratory tract infections with bacterial lysate OM-85 bronchomunal in children and adults: a state of the art. Multidiscip Respir Med 8(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ahrens B, Quarcoo D, Buhner S et al (2011) Oral administration of bacterial lysates attenuates experimental food allergy. Int Arch Allergy Immunol 156(2):196–204

    Article  PubMed  Google Scholar 

  15. Lau S (2013) Oral application of bacterial lysate in infancy diminishes the prevalence of atopic dermatitis in children at risk for atopy. Benef Microbes 25:1–3

    Google Scholar 

  16. Lu Y, Li Y, Xu L et al (2015) Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children. Pharmacology 95(3–4):139–144

    Article  CAS  PubMed  Google Scholar 

  17. Vissers JL, van Esch BC, Hofman GA et al (2004) Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model. J Allergy Clin Immunol 113(6):1204–1210

    Article  CAS  PubMed  Google Scholar 

  18. Ford JG, Rennick D, Donaldson DD et al (2001) Il-13 and IFN-gamma: interactions in lung inflammation. J Immunol 167(3):1769–1777

    Article  CAS  PubMed  Google Scholar 

  19. Sagar S, Verheijden KA, Georgiou NA et al (2013) Differential regulation of inflammation and immunity in mild and severe experimental asthma. Mediat Inflamm 2013:808470

    Article  Google Scholar 

  20. Holgate ST (2012) Innate and adaptive immune responses in asthma. Nat Med 18(5):673–683

    Article  CAS  PubMed  Google Scholar 

  21. Bogaert P, Tournoy KG, Naessens T et al (2009) Where asthma and hypersensitivity pneumonitis meet and differ: noneosinophilic severe asthma. Am J Pathol 174(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fahy JV (2009) Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc Am Thorac Soc 6(3):256–259

    Article  CAS  PubMed  Google Scholar 

  23. Antoniu SA (2010) MEDI-528, an anti-IL-9 humanized antibody for the treatment of asthma. Curr Opin Mol Ther 12:233–239

    CAS  PubMed  Google Scholar 

  24. Gauvreau GM, Boulet LP, Cockcroft DW et al (2011) Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med 183:1007–1014

    Article  CAS  PubMed  Google Scholar 

  25. Mullane K (2011) Asthma translational medicine: report card. Biochem Pharmacol 82:567–585

    Article  CAS  PubMed  Google Scholar 

  26. Okayama Y (2013) Cellular and humoral immunity of virus-induced asthma. Front Microbiol 27(4):252

    Google Scholar 

  27. Jackson DJ, Lemanske RF Jr (2010) The role of respiratory virus infections in childhood asthma inception. Immunol Allergy Clin N Am 30(4):513–522

    Article  Google Scholar 

  28. Dulek DE, Peebles RS Jr (2011) Viruses and asthma. Biochim Biophys Acta 1810(11):1080–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Podleski WK (1985) Immunomodulation of allergic autocytotoxicity in bronchial asthma by a bacterial lysate–Broncho-Vaxom. Int J Immunopharmacol 7(5):713–718

    Article  CAS  PubMed  Google Scholar 

  30. Weinberger M (2010) Can we prevent exacerbations of asthma caused by common cold viruses? J Allergy Clin Immunol. 126(4):770–771

    Article  PubMed  Google Scholar 

  31. Schaad UB (2010) OM-85 BV, an immunostimulant in pediatric recurrent respiratory tract infections: a systematic review. World J Pediatr 6(1):5–12

    Article  CAS  PubMed  Google Scholar 

  32. Razi CH, Harmancı K, Abacı A et al (2010) The immunostimulant OM-85 BV prevents wheezing attacks in preschool children. J Allergy Clin Immunol 126(4):763–769

    Article  CAS  PubMed  Google Scholar 

  33. Rozy A, Chorostowska-Wynimko J (2008) Bacterial immunostimulants—mechanism of action and clinical application in respiratory diseases. Pneumonol Alergol Pol 76(5):353–359

    PubMed  Google Scholar 

  34. Strickland DH, Judd S, Thomas JA et al (2011) Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control. Mucosal Immunol 4:43–52

    Article  CAS  PubMed  Google Scholar 

  35. Navarro S, Cossalter G, Chiavaroli C et al (2011) The oral administration of bacterial extracts prevents asthma via the recruitment of regulatory T cells to the airways. Mucosal Immunol 4:53–65

    Article  CAS  PubMed  Google Scholar 

  36. Fu R, Li J, Zhong H, Yu D et al (2014) Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3β-related T regulatory cell insufficiency. PLoS One 9(3):e92912

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Huang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. This research involved animals. The study was approved by the Hospital Ethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, R., Yao, R. et al. The Immunotherapeutic Role of Bacterial Lysates in a Mouse Model of Asthma. Lung 195, 563–569 (2017). https://doi.org/10.1007/s00408-017-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-0003-8

Keywords

Navigation