Skip to main content
Log in

Coronary Microembolization—Its Role in acute coronary syndromes and interventions

Koronate Mikroembolisierung — Bedeutung bei akuten koronaren Syndromen und bei interventionellen Eingriffen

  • Published:
Herz Aims and scope Submit manuscript

Abstract

The diagnosis coronary artery disease is classically based on patient’s symptoms and morphology, as analyzed by angiography. The importance of risk factors for the development of coronary atherosclerosis and disturbance of coronary vasomotion is clearly established. However, micorembolization of the coronary circulation has also to be taken into account. Microembolization may occur as a single or as multiple, repetitive events, and it may induce inflammatory responses. Spontaneous microembolization may occur, when the fibrous cap of an atheroma or fibroatheroma (Stary IV and Va) ruptures and the lipid pool with or without additional thrombus formation is washed out of the atheroma into the microcirculation. Such events with progressive thrombus formation are known as cyclic flow variations. Plaque rupture occurs more frequenty than previously assumed, i. e. in 9% of patients without known heart disease suffering a traffic accident and in 22% of patients with hypertension and diabetes. Also, in patients dying from sudden death microembolization is frequently found. Patients with stable and unstable angina show not only signs of coronary plaque rupture and thrombus formation, but also microemboli and microinfarcts, the only difference between those with stable and unstable angina being the number of events. Appreciation of microembolization may help to better understand the pathogenesis of ischemic cardiomyopathy, diabetic cardiomyopathy and acute coronary syndromes, in particular in patients with normal coronary angiograms, but plaque rupture detected by intravascular ultrasound. Also, the benefit from glycoprotein IIb/IIIa receptor antagonist is better understood, when not only the prevention of thrombus formation in the epicardial atherosclerotic plaque, but also that of microemboli is taken into account. Microembolization also occurs during PTCA, inducing elevations of troponin T and I and elevations of the ST segment in the EKG. Elevated baseline coronary blood flow velocity, as a potential consequence of reactive hyperemia in myocardium surrounding areas of microembolization, is more frequent in patients with high frequency rotablation than in patients with stenting and in patients with PTCA. The hypothesis of iatrogenic microembolization during coronary interventions is now supported by the use of aspiration and filtration devices, where particles with a size of up to 700μm have been retrieved.

In the experiment, microembolization is characterized by perfusion-contraction mismatch, as the proportionate reduction of flow and function seen with an epicardial stenosis is lost and replaced by contractile dysfunction in the absence of reduced flow.

The analysis of the coronary microcirculation, in addition to that of the morphology and function of epicardial coronary arteries, and in particular appreciation of the concept of microembolization will further improve the understanding of the pathophysiology and clinical symptoms of coronary artery disease.

Zusammenfassung

Die klassische Diagnose der koronaren Herzerkrankung stützt sich auf die Symptome, die Morphologie der Koronargefäße und die Bewertung der koronaren Vasomotion. Sowohl für die Entwicklung der Koronarsklerose als auch für die gestörte Vasomotion ist die Bedeutung der Risikofaktoren analysiert und gewichtet worden. In die Betrachtung der Pathogenese der koronaren Herzerkrankung muß jedoch die Mikroembolisierung des Myokards, die als Einzelereignis oder in multiplen Episoden auftreten kann, neu aufgenommen werden. Die Ereignisse können während des Lebens repetitiv und periodisch entstehen und Entzündungstreaktion auslösen oder verstärken. Spontan sind diese Mikroembolisierungen zu beobachten, wenn die fibröse Kappe im Stadium des Atheroms oder Fibroatheroms (Stary IV und Va) einreißt und der Lipidkern mit oder ohne Thrombusbildung embolisiert. Diese Effekte können bei eine Koronarstenose durch progressive Thrombusbildungen, die sich wieder ablösen und neu aufbauen können, verstärkt werden. Plaquerupturen sind häufiger als vermutet und sind auch bei Gesunden zu beobachten. Sie werden in 9% der Unfallopfer ohne manifeste Herzerkrankungen, aber in 22% bei Patienten mit Hypertonie und Diabetes aufgedeckt. Bei Patienten mit plötzlichem Herztod werden regelmäßig periphere Mikroembolisierungen nachgewiesen. Patienten mit stabiler und unstabiler Angina pectoris unterscheiden sich nur in der Zahl der Mikroinfarkte. Dies bedeutet, daß die koronare Herzerkrankung in ihrer Vielfalt besser verstanden wird, wenn auch die Möglichkeit einer Mikroembolisierung mit berücksichtigt wird, so für die Erklärung einer ischämischen Kardiomyopathie, einer diabetischen Kardiomyopathie, der akuten Koronarsyndrome, zum Beispiel mit normalem Koronarogramm. Das Verständnis der Mikroembolisierungen öffnet auch neue Perspektiven in der Strategie zur Stabilisierung einer vulnerablen Plaque, da bei der Plaqueruptur nicht nur die Möglichkeit der inkompletten oder kompletten Thrombusbildung. sondern auch die Verhinderung einer Mikroembolisierung diskutiert werden muß. Der therapeutische Benefit, insbesondere des Glykoprotein-IIb/IIIa-Rezeptor Antagonisten Abxicimab (Rheo Pro®), beruht auf einer Blockade der Bildung von Thromben, aufgepfropft auf atherosklerotischen Plaques und/oder Mikroembolien. Es wird vermutet, daß auch periinterventionell Mikroembolisierungen auftreten und Mikroinfarkte auslösen können, die zu CK, Troponin-T-und/oder-I-Erhöhung und EKG-Veränderungen führen könen. Als Hinweis auf eine mögliche Mikroembolisierung ist der Nachweis einer erhöhten basalen Flußgeschwindigkeit nach Intervention gewertet worden, da er experimentell nach Mikroembolisierung beschrieben worden ist. Diese Hypothese ist durch die Verwendung von Aspirations- und Filtersystemen nun bewiesen worden. Überraschend zahlreich waren die aufgefangenen Partikel, die bis zu 700 μm Länge aufwiesen. Die Bedeutung der Mikroembolisierung wird dazu führen, daß bei nachgewiesenen Thromben oder Plaquerupturen neue interventionelle Techniken genutzt werden, um eine Mikroembolisierung zu verhindern. Neben dem Einsatz von Filtersystemen stehen auch Graft-Stents zur Verfügung.

Die Analyse der Morphologie und Funktion epikardialer Gefäße wird durch die Betrachtung der mikrovaskulären Strombahn ergänzt und vervollständigt das Bild der Koronaren Herzerkrankung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelmeguid AE, Topol EJ, Whitlow PL, et al. Significance of mild transient release of creatine kinases-MB fraction after percutaneous coronary interventions. Circulation 1996; 94: 1528–36.

    PubMed  CAS  Google Scholar 

  2. Abdelmeguid AE, Topol EJ. The myth of the myocardial “infarctlet” during percutaneous coronary revascularization procedures. Circulation 1996; 94: 3369–75.

    PubMed  CAS  Google Scholar 

  3. Adelman AG, Cohen EA, Kimball BP, et al. A comparison of directional atherectomy with bailoon angioplasty for lesions of the left anterior descending coronary artery. N Engl J Med 1993; 329: 228–33.

    Article  PubMed  CAS  Google Scholar 

  4. Aengevaeren WRM, Uijen GJH, van der Werf T. Comparison of coronary flow velocity and regional myocardial perfusion for functional evaluation of coronary artery disease in the setting of angioplasty. Cath Cardiovasc Diagn 1998; 45: 16–24.

    Article  CAS  Google Scholar 

  5. Agati L, Voci P, Bilotta F, et al. Influence of residual perfusion within the infarct zone on the natural history of left ventricular dysfunction after acute myocardial infarction: a myocardial contrast echocardiographic study. J Am Coll Cardiol 1994; 24: 336–42.

    PubMed  CAS  Google Scholar 

  6. Ahn SS, Auth D, Marcus DR, et al. Removal of focal atheromatous lesions by angioscopically guided high-speed rotary atherectomy: preliminary experimental observations. J Vasc Surg 1988; 7: 292–300.

    Article  PubMed  CAS  Google Scholar 

  7. Alfonso F, Goicolea J, Hernandez R, et al. Findings of coronary angioscopy in angiographically normal coronary segments of patients with coronary artery disease. Am Heart J 1995; 130: 987–93.

    Article  PubMed  CAS  Google Scholar 

  8. Alfonso F, Macaya C, Goicolea J, et al. Angiographic changes induced by intracoronary ultrasound imaging before and after coronary angioplasty. Am Heart J 1993; 125: 877–80.

    Article  PubMed  CAS  Google Scholar 

  9. Alpert JS. Coronary vasomotion, coronary thrombosis, myocardial infarction and the camel’s back. J Am Coll Cardiol 1985; 5: 617–9.

    Article  Google Scholar 

  10. Amanullah AM, Lindvall K, Bevegard S. Exercise echocardiography after stabilization of unstable angina: Correlation with exercise thallium-201 single photon emission computed tomography. Clin Cardiol 1992; 15: 585–9.

    Article  PubMed  CAS  Google Scholar 

  11. Ambrose JA, Hjemdahl-Monsen CE. Arteriographic anatomy and mechanism of myocardial ischemia in unstable angina. J Am Coll Cardiol 1987; 9: 1397–402.

    PubMed  CAS  Google Scholar 

  12. Ambrose JA, Winters SL, Arora RR, et al. Evolution of coronary morphology in unstable angina pectoris. J Am Coll Cardiol 1986; 7: 472.

    Article  PubMed  CAS  Google Scholar 

  13. Ambrose JA, Winters SL, Stern A, et al. Angiographic morphology and the pathogenesis of unstable angina pectoris. J Am Coll Cardiol 1985; 5: 609.

    Article  PubMed  CAS  Google Scholar 

  14. Ameli S, Kaul S, Castro L, et al. Effect of percutaneous transluminal coronary angioplasty on circulating endothelin levels. Am J Cardiol 1993; 72: 1352–6.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson JL, Karagounis LA, Becker LC. TIMI perfusion grade 3 but not grade 2 results in improved outcome after thrombolysis for myocardial infarction. Circulation 1993; 87: 1829–39.

    PubMed  CAS  Google Scholar 

  16. Annex BH, Denning SM, Channon KM, et al. Differential experssion of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 1995; 91: 619–22.

    PubMed  CAS  Google Scholar 

  17. Antman EM, Grudzien C, Mitchell RN, et al. Detection of unsuspected myocardial necrosis by rapid bedside assay for cardiac troponin T. Am Heart J 1997; 133: 596–8.

    Article  PubMed  CAS  Google Scholar 

  18. Aoki T, Konishi T, Futagami Y, et al. Clinical significance of exercise induced ST segment depression after successful percutaneous transluminal coronary angioplasty. Assessment by thallium-201 SPECT. Jpn J Nucl Med 1989; 26: 733–41.

    CAS  Google Scholar 

  19. Ashton JH, Golino P, McNatt JM, et al. Serotonin S-2 and thromboxane A-2-prostaglandin H-2 receptor blockade provide protection against epinephrine-induced cyclic flow variations in severely narrowed canine coronary arteries. J Am Coll Cardiol 1989; 13: 755–63.

    PubMed  CAS  Google Scholar 

  20. Baumgart D, Haude M, Goerge G, et al. Improved assessment of coronary stenosis severity using the relative flow velocity reserve. Circulation 1998; 98: 40–6.

    PubMed  CAS  Google Scholar 

  21. Baumgart D, Liu F, Haude M, et al. Acute plaque rupture and myocardial stunning in patients with normal coronary arteriography. Lancet 1995; 346: 193–4.

    Article  PubMed  CAS  Google Scholar 

  22. Benamer H, Steg PG, Benessiano J, et al. Comparison of the prognostic value of C-reactive protein and troponin I in patients with unstable angina pectoris. Am J Coll Cardiol 1998; 82: 845–50.

    CAS  Google Scholar 

  23. Betrand ME, Lalanche JM, Leroy F, et al. Percutaneous transluminal coronary rotary ablation with rotablator (European experience). Am J Cardiol 1992; 69: 470–4.

    Article  Google Scholar 

  24. Biasucci LM, Liuzzo G, Grillo RL, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation 1999; 99: 855–60.

    PubMed  CAS  Google Scholar 

  25. Bittle JA, Sanborn TA, Yardley DE, et al. Predictors of outcome of percutaneous excimer laser coronary angioplasty of saphenous vein bypass graft lesions. Am J Cardiol 1994; 74: 144–8.

    Article  Google Scholar 

  26. Bocksch W, Schartl M, Beckmann S, et al. Intravascular ultrasound assessment of direct percutaneous transluminal coronary angioplasty in patients with acute myocardial infarction. Coron Art Dis 1997; 8: 265–73.

    Article  CAS  Google Scholar 

  27. Bocksch WG, Schartl M, Beckmann SH, et al. Intravascular ultrasound imaging in patients with acute myocardial infarction: comparison with chronics table angina pectoris. Coron Art Dis 1994; 5: 727–35.

    CAS  Google Scholar 

  28. Bowers TR, Stewart RE, O’Neill WW, et al. Effect of rotablator atherectomy and adjunctive balloon angioplasty of coronary blood flow. Circulation 1997; 95: 1157–64.

    PubMed  CAS  Google Scholar 

  29. Braunwald E. Unstable angina: a classification. Circulation 1989; 80: 410–4.

    PubMed  CAS  Google Scholar 

  30. Bresnahan DR, Davis JL, Holmes DR, et al. Angiographic occurrence and clinical correlates of intraluminal coronary artery thrombus: role of unstable angina. J Am Coll Cardiol 1985; 6: 285–9.

    Article  PubMed  CAS  Google Scholar 

  31. Brogan WC III, Popma JJ, Pichard AD, et al. Rotational coronary atherectomy after unsuccessful coronary balloon angioplasty. Am J Cardiol 1993; 71: 794–8.

    Article  PubMed  Google Scholar 

  32. Brown DL, George CJ, Steenkiste AR, et al. High-speed rotational atherectomy of human coronary stenoses: Acute and one-year outcomes from the New Approaches to Coronary Intervention (NACI) registry. J Am Coll Cardiol 1997; 80 A: 60K-7K.

    CAS  Google Scholar 

  33. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in patients with coronary disease dying suddenly. N Engl J Med 1997; 336: 1276–82.

    Article  PubMed  CAS  Google Scholar 

  34. Burke AP, Farb A, Malcom GT, et al. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 1999; 281: 921–6.

    Article  PubMed  CAS  Google Scholar 

  35. Califf RM, Abdelmeguid AE, Kuntz RE, et al. Myonecrosis after revascularization procedures. J Am Coll Cardiol 1998; 31: 241–51.

    Article  PubMed  CAS  Google Scholar 

  36. Carlino M, De Gregorio J, Di Mario C, et al. Prevention of distal embolization during saphenous vein graft lesion angioplasty. Experience with a new temporary occlusion and aspiration system. Circulation 1999; 99: 3221–3.

    PubMed  CAS  Google Scholar 

  37. Cheirif JB, Narkiewicz-Jodko JB, Hawkins HK, et al. Myocardial contrast echocardiography: relation of collateral perfusion to extent of injury and severity of contractile dysfunction in a canine model of coronary thrombosis and reperfusion. J Am Coll Cardiol 1995; 26: 537–46.

    Article  PubMed  CAS  Google Scholar 

  38. Colombo A, Goldberg SL, Almagor Y, et al. A novel strategy for stent deployment in the treatment of acute or threatened closure complicating balloon coronary angioplasty. Use of short or standard (or both) single or multiple Palmaz-Schatzstents. J Am Coll Cardiol 1993; 22: 1887–91.

    Article  PubMed  CAS  Google Scholar 

  39. Colombo A, Hall P, Nakamura S, et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 1995; 91: 1676–88.

    PubMed  CAS  Google Scholar 

  40. Colt HG, Begg RJ, Saporito JJ, et al. Cholesterol emboli after cardiac catheterization. Eight cases and a review of literature. Medicine (Baltimore) 1988; 67: 389–400.

    CAS  Google Scholar 

  41. Davies MJ, Bland MJ, Hangartner WR, et al. Factors influencing the presence or absence of acute coronary thrombi in sudden ischemic death. Eur Heart J 1989; 10: 203–8.

    PubMed  CAS  Google Scholar 

  42. Davies MJ, Thomas A. Thrombosis and acute coronary artery lesions in sudden cardiac ischaemic death. N Engl J Med 1984; 310: 1137–40.

    PubMed  CAS  Google Scholar 

  43. Davies MJ, Thomas AC, Knapman PA, et al. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischaemic cardiac death. Circulation 1986; 73: 418–27.

    PubMed  CAS  Google Scholar 

  44. Davies MJ, Thomas AC. Plaque fissuring—the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J 1985; 53: 363–73.

    Article  PubMed  CAS  Google Scholar 

  45. De Feyter P, Serruys P, van den Brand M, et al. Percutaneous transluminals angioplasty of a totally occluded bypass graft: a challenge that should be resisted. Am J Cardiol 1989; 64: 88–90.

    Article  PubMed  Google Scholar 

  46. Den Heijer P, Foley DP, Escaned J, et al. Angioscopic versus angiographic detection of intimal dissection and intracoronary thrombus. J Am Coll Cardiol 1994; 24: 649–54.

    Article  Google Scholar 

  47. De Wood MA, Spores J, Notske R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980; 303: 897–902.

    Google Scholar 

  48. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow and flow reserve in patients with coronary artery disease. Circulation 1995; 91: 1944–51.

    PubMed  Google Scholar 

  49. Dietz U, Erbel R, Rupprecht H. et al. High frequency rotational ablation: an alternative in treating coronary artery stenoses and occlusions. Br Heart J 1993; 70: 327–36.

    Article  PubMed  CAS  Google Scholar 

  50. Dissmann R, Linderer T, Goerke M, et al. Sudden increase of the ST segment elevation at time of reperfusion predicts extensive infarcts in patients with intravenous thrombolysis. Am Heart J 1993; 126: 832–9.

    Article  PubMed  CAS  Google Scholar 

  51. Diver DJ, Bier JD, Ferreira PE, et al. Clinical and arteriographic characterization of patients with unstable angina without critical coronary arterial narrowing (from the TIMI-IIIa Trial). Am J Cardiol 1994; 74: 531–7.

    Article  PubMed  CAS  Google Scholar 

  52. Dooris M, Hoffmann M, Glazier S, et al. Comparative results of transluminal extraction coronary atherectomy in saphenous vein graft lesions with and without thrombus. J Am Coll Cardiol 1995; 25: 1700–5.

    Article  PubMed  CAS  Google Scholar 

  53. Dörge H, Behrends M, Neumann T, et al. Perfussion-contraction mismatch with coronary microvascular obstruction. J Mol Cell Cardiol 1999; 31: A58.

    Google Scholar 

  54. Düber C, Jungbluth A, Rumpelt HJ, et al. Morphology of the coronary arteries after combined thrombolysis and percutaneous transluminal coronary angioplasty for acute myocardial infarction. Am J Cardiol 1986; 58: 698–703.

    Article  PubMed  Google Scholar 

  55. El Tamimi H, Davies GJ, Hackett D, et al. Abnormal vasomotor changes early after coronary angioplasty: a quantitative arteriographic study of their time course. Circulation 1991; 84: 1198–202.

    PubMed  Google Scholar 

  56. El Thamimi H, Hackett D. Holter monitoring after PTCA. Eur Heart J 1989; 10: 33–35.

    Google Scholar 

  57. Ellis SG, Popma JJ, Buchbinder M, et al. Relation of clinical presentation, stenosis morphology, and operator technique to the procedural results of rotational atherectomy and rotational atherectomy-facilitated angioplasty. Circulation 1994; 89: 882–92.

    PubMed  CAS  Google Scholar 

  58. EPILOG Investigators. Effect of the platelet glycoprotein IIb/IIIa receptor inhibitor abciximab with lower heparin dosages on ischemic complications of percutaneous coronary revascularization. N Engl J Med 1997;336:1689–96.

    Article  Google Scholar 

  59. Erbel R, Ge J, Görge G, et al. Netle Aspekte zur Pathogenese der koronaren Hererkrankung auf dem Boden intravaskulärer Ultraschalluntersuchungen. Dtsch Med Wochenschr 1995;120:847–54.

    Article  PubMed  CAS  Google Scholar 

  60. Erbel R, Haude M, Höpp HW, et al. For the Restenosis Stent Study Group. Coronary-artery stenting compared with balloon angioplasty. N Engl J Med 1998;339:1672–8.

    Article  PubMed  CAS  Google Scholar 

  61. Erbel R, O’Neil W, Auth D, et al. Hochtrequenz-Rotationsatherektomie bei koronarer Herzkrankheit. Dtsch Med Wochenschr 1989;114:487–95.

    Article  PubMed  CAS  Google Scholar 

  62. Erbel R, Pop T, Henrichs KJ, et al. Percutaneous transluminal coronary angioplasty after thrombolytic therapy: a prospective controlled randomized trial. J Am Coll Cardiol 1986;8: 485–95.

    Article  PubMed  CAS  Google Scholar 

  63. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombl. Br Heart J 1983;50:127–34.

    Article  PubMed  CAS  Google Scholar 

  64. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Circulation 1985;71:699–708.

    PubMed  CAS  Google Scholar 

  65. Faxon DP, Detre KM, McGabe CH, et al. Role of percutaneous transluminal coronary angioplasty in the treatment of unstable angina: report from the National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty and Coronary Artery Surgery Study Registries. Am J Cardiol 1983;53: 131C-5C.

    Article  Google Scholar 

  66. Fernandez-Ortiz A, Badimon JJ, Falk E, et al. Characterization of the relative thrombogenicity of atherosclerotic plaque componeuts: implications for consequences of plaque rupture. J Am Coll Cardiol 1994;23:1562–9.

    Article  PubMed  CAS  Google Scholar 

  67. Fioretti PM, Pozzoli MMA, Ilmer B, et al. Exercise echocardiography versus thallium-201 SPECT for assessing patients before and after PTCA. Eur Heart J 1992;13:213–19.

    PubMed  CAS  Google Scholar 

  68. Fischell TA, Derby G, Tse TM, et al. Coronary artery vasoconstriction routinely occurs after percutaneous transluminal coronary angioplasty: a quantitative arteriographic analysis. Circulation 1998;78:1323–34.

    Google Scholar 

  69. Fishman DL, Leon MB, Baim DS. For the stent restenosis study investigators. N Engl J Med 1994;331:496–501.

    Article  Google Scholar 

  70. Folts JD, Gallagher K, Rowe GG. Blood flow reductions in stenosed canine coronary arteries: vasospasm of platelet aggregation? Circulation 1982;65:248.

    PubMed  CAS  Google Scholar 

  71. Franzen D, Seceetem U, Höpp HW. Comparison of angioscopic, intravascular ultrasonic, and angiographic detection of thrombus in coronary stenosis. Am J Cardiol 1998;82:1273–5.

    Article  PubMed  CAS  Google Scholar 

  72. Friedman HZ, Elliott MA, Gottlieb GJ, et al. Rotational coronary atherectomy: The effects of micro-particle embolization on myocardial blood flow. J Intervent Cardiol 1989;2:77–83.

    Article  Google Scholar 

  73. Frink RJ, Rooney PA, Trowbridge JO, et al. Coronary thrombus and platelel/fibrin microembli in death associated with acute myocardial infarction. Br Heart J 1988;59:196–200.

    Article  PubMed  CAS  Google Scholar 

  74. Fukuzawa S, Inagaki M, Morooka S, et al. An effective tool to detect lesions causing unstable angina with multivessel disease: Iodine-123-betamethyl-p-iodopheyl-pentadeanoic acid single photon emission computed tomography. J Cardiol 1996;28:191–8.

    PubMed  CAS  Google Scholar 

  75. Fuster V, Badimon JJ, Chesebro JH, et al. Plaque rupture, thrombosis, and therapeutic implications. Haemostasis 1996;4:269–84.

    Google Scholar 

  76. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (part I). N Engl J Med 1992;326:242–50.

    PubMed  CAS  Google Scholar 

  77. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (part II). N Engl J Med 1992;326:310–8.

    PubMed  CAS  Google Scholar 

  78. Gallagher KP, Matsuzaki M, Osakada G, et al. Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 1983;52:716–29.

    PubMed  CAS  Google Scholar 

  79. Garratt KN, Edwards WD, Kaufmann UP, et al. Differential histopathology of primary atherosclerotic and restenotic lesions in coronary arteries and saphenous vein bypass grafts: analysis of tissue obtained from 73 patients by directional atherectomy. J Am Coll Cardiol 1991;17:442–8.

    Article  PubMed  CAS  Google Scholar 

  80. Ge J, Chirillo F, Schweedtmann J, et al. Screening of ruptured plaques in patients with coronary artery disease by intravascular ultrasound. Br Heart J 1999;81:621–7.

    CAS  Google Scholar 

  81. Ge J, Erbel R, Zamorano J, et al. Coronary artery remodeling in atherosclerotic disease: An intravascular ultrasonic study in vivo. Coron Art Dis 1993;4:981–6.

    Article  CAS  Google Scholar 

  82. Ge J, Erbel R, Zamorano J, et al. Improvement of coronary morphology and blood flow after stenting: assessment by intravascular ultrasound and intracoronary Doppler. Int J Card Imag 1995;11:81–7.

    Article  CAS  Google Scholar 

  83. Ge J, Haude M, Görge G, et al. Silent healing of spontaneous plaque disruption demonstrated by intracoronary ultrasound. Eur Heart J 1995;16:1149–51.

    PubMed  CAS  Google Scholar 

  84. Ge J, Liu F, Kearney P, et al. Intravascular ultrasound approach to the diagnosis of coronary artery aneurysms. Am Heart J 1995;130:765–71.

    Article  PubMed  CAS  Google Scholar 

  85. Georgoulias P, Demakopoulos N, Kontos A, et al. Tc-99m tetrofosmin myocardial perfusion imaging before and six months after percutaneous transluminal coronary angioplasty. Clin Nucl Med 1998;23:678–82.

    Article  PubMed  CAS  Google Scholar 

  86. Gerber TC, Erbel R, Görge G, et al. Classification of morphologic effects of percutaneous transluminal coronary angioplasty assessed by intravascular ultrasound. Am J Cardiol 1992;70: 1546–54.

    Article  PubMed  CAS  Google Scholar 

  87. Gibbons RJ, Holmes DR, Reeder GS, et al. Immediate angioplasty compared with the administration of a thrombolytic agent followed by conservative treatment for myocardial infarction: the Mayo Coronary Care Unit and Catheterization Laboratory Groups. N Engl J Med 1993;328:685–91.

    Article  PubMed  CAS  Google Scholar 

  88. Golino P, Buja LM, Sheng-Kun Y, et al. Failure of nitroglycerin and diltiazem to reduce platelet-mediated vasoconstriction in dogs with coronary artery stenosis and endothelial injury: Further evidence for thromboxane A-2 and serotonin as mediators of coronary artery vasoconstriction in vivo. J Am Coll Cardiol 1990;15:718–26

    Article  PubMed  CAS  Google Scholar 

  89. Görge G, Haude M, Ge J, et al. Intravascular ultrasound after low and high inflation pressure coronary artery stent implantation. J Am Coll Cardiol 1995;26:725–30.

    Article  PubMed  Google Scholar 

  90. Gorlin R, Fuster V, Ambrose JA. Anatomic-physiologic links between acute coronary syndromes. Circulation 1986;74:6–9.

    PubMed  CAS  Google Scholar 

  91. Gregoire J, Theroux P. Detection and assessment of unstable angina using myocardial perfusion imaging: Comparison between technetium-99m sestabmibi SPECT and 12-lead electrocardiogram. Am J Cardiol 1990;66:42E-6E.

    Article  PubMed  CAS  Google Scholar 

  92. Gregorini L, Fajadet J, Robert G, et al. Coronary vasoconstriction after percutaneous transluminal coronary angioplasty is attenuated by antiadrenergic agents. Circulation 1994;90:895–907.

    PubMed  CAS  Google Scholar 

  93. Grines CL, Browne KF, Marco J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction: the Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med 1993;328:673–9.

    Article  PubMed  CAS  Google Scholar 

  94. Grüntzig AR, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 1979;301:61–7.

    PubMed  Google Scholar 

  95. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI): Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986;1:397–401.

    Google Scholar 

  96. Guethlin M, Kasel AM, Coppenrath K, et al. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 1999;99:475–81.

    PubMed  CAS  Google Scholar 

  97. Gussenhoven EJ, The SHK, Gerritsen P, et al. Real-time intravascular ultrasonic imaging before and after balloon angioplasty. J Clin Ultrasound 1991;19:294–7.

    Article  PubMed  CAS  Google Scholar 

  98. Hamm CW, Ravkilde J, Gerhardt W, et al. The prognostic value of serum troponin T in unstable angina. N Engl J Med 1992;327:146–50.

    PubMed  CAS  Google Scholar 

  99. Harrington RA, Lincoff AM, Califf RM, et al. Characteristics and consequences of myocardial infarction after percutaneous coronary intervention: insights from the Coronary Angioplasty Versus Excisional Atherectomy Trial (CAVEAT). J Am Coll Cardiol 1995;25:1693–9.

    Article  PubMed  CAS  Google Scholar 

  100. Hartmann JR, McKeaver LS, O’Neill W, et al. Recanalization of chronically occluded aortocoronary saphenous vein bypass grafts with long-term, low dose direct infusion of urokinase (ROBUST): a serial trial. J Am Coll Cardiol 1996;27:60–6.

    Article  PubMed  CAS  Google Scholar 

  101. Hartmann JR, McKeaver LS, Stamato NJ, et al. Recanalization of chronically occluded aortocoronary saphenous vein bypass grafts by extended infusion of urokinase: initial results and short-term clinical follow-up. J Am Coll Cardiol 1991;18: 1517–23.

    Article  PubMed  CAS  Google Scholar 

  102. Haude M, Caspari G, Baumgart D, et al. Additional improvement of stenosis dimensions and coronary flow after intracoronary implantation of Palmaz-Schatz stents. Circulation 1996;94: 286–97.

    PubMed  CAS  Google Scholar 

  103. Haude M, Erbel R, Straub U, et al. Results on intracoronary stents for management of coronary dissection after balloon angioplasty. Am J Cardiol 1991;67:691–6.

    Article  PubMed  CAS  Google Scholar 

  104. Herrmann J, Sack S, von Birgelen C, et al. Peri-interventionelle Myokardnekrotisierungen — Abhängigkeit von der Interventionstechnik. Z Kardiol 1999;88:Suppl I:188.

    Google Scholar 

  105. Herrmann J, von Birgelen C, Sack S, et al. Klinische Marker myokardialer Mikroinfarkte nach koronaren Interventionen. Z Kardiol 1998;87:Suppl 5:59.

    Google Scholar 

  106. Heusch G, Baumgart D, Camici P, et al. a-adrenergic coronary vasoconstriction and myocardial ischemia in man. Circulation (in press).

  107. Heusch G. Hibernating myocardium. Physiol Rev 1998;78:1055–85.

    PubMed  CAS  Google Scholar 

  108. Hodgson JM, Riley RS, Most AS, et al. Assessment of coronary flow reserve using digital angiography before and after successful percutaneous transluminal coronary angioplasty. Am J Cardiol 1987;60:61–5.

    Article  PubMed  CAS  Google Scholar 

  109. Hoffmann JIE. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984;70:153–9.

    Google Scholar 

  110. Höfting B, Pölnitz A, Backa D, et al. Percutaneous removal of atheromatous plaques in peripheral arteries. Lancet 1988;1: 384–6.

    Article  Google Scholar 

  111. Holmes DR, Berger PB. Percutaneous revascularization of occluded vein grafts is it still a temptation to be resisted? Circulation 1999;99:8–11.

    PubMed  Google Scholar 

  112. Holmes DR, Topol EJ, Califf RM, et al. A multicenter, randomized trial of coronary angioplasty versus directional atherectomy for patients with saphenous vein bypass graft lesions. Circulation 1995;91:1966–74.

    PubMed  Google Scholar 

  113. Honour AJ, Ross RV. Experimental platelet emblism. Br J Exp Pathol 1962;43:350–62.

    PubMed  CAS  Google Scholar 

  114. Honye J, Mahon DJ, Jain A, et al. Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation 1992;85:1012–25.

    PubMed  CAS  Google Scholar 

  115. Hori M, Gotoh K, Kitakaze M, et al. Role of oxygen-derived free radicals in myocardial edema and ischemia in coronary microvascular embolization. Circulation 1991;84:828–40.

    PubMed  CAS  Google Scholar 

  116. Hori M, Inoue M, Kitakaze M, et al. Role of adenosine in hyperemic response of coronary blood flow in microcirculation. Am J Physiol 1986;250:H509–18.

    PubMed  CAS  Google Scholar 

  117. Iliceto S, Galiuto L, Marchese A, et al. Analysis of microvascular integrity, contractile reserve and myocardial viability after acute myocardial infarction by dobutamine echocardiography an myocardial contrast echocardiography. Am J Cardiol 1996; 77:441–5.

    Article  PubMed  CAS  Google Scholar 

  118. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group: Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17, 187 cases of suspected acule myocardial infarction: ISIS-2. Lancet 1988;2:349–60.

    Google Scholar 

  119. Isner JM, Rosenfield K, Losordo DW, et al. Combination balloon-ultrasound imaging catheter for percutaneous transluminal angioplaty: validation of imaging, analysis of recoil, and identification of plaque fracture. Circulation 1991;84:739–54.

    PubMed  CAS  Google Scholar 

  120. Ito H, Maruyama A, Iwakura K, et al. Clinical implications of the ‘no reflow’ phenomenon: a predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996;93:223–8.

    PubMed  CAS  Google Scholar 

  121. Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis: a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992;85:1699–705.

    PubMed  CAS  Google Scholar 

  122. Jeremias A, Ge J, Erbel R. New insight into plaque healing after plaque rupture with subsequent thrombus formation detected by intravascular ultrasound. Heart 1997;3:293.

    Article  Google Scholar 

  123. Jeremias A, Kutscher S, Haude M, et al. Nonischemic chest pain induced by coronary interventions. A prospective study comparing coronary angioplasty and stent implantation. Circulation 1998;98:2656–8.

    PubMed  CAS  Google Scholar 

  124. Jorgensen L, Rowsell HC, Hovig T, et al. Adenosine diphosphate-induced platelet aggregation and myocardial infarction in swine. Lab Invest 1967;17:616–44.

    PubMed  CAS  Google Scholar 

  125. Jorgensen L. Experimental platelet and coagulation thrombl. Acta Pathol Microbiol Scand 1964;62:189–223.

    PubMed  CAS  Google Scholar 

  126. Kahn KJ, Rutherford BD, McConahay DR, et al. Initial and long-term outcome of 83 patients after balloon angioplasty of totally occluded bypass grafts. J Am Coll Cardiol 1994;23: 1038–42.

    Article  PubMed  CAS  Google Scholar 

  127. Karlsson JE, Bjorkholm A, Nylander E, et al. Additional value of thallium-201 SPECT to a conventional exercise test for the identification of severe coronary lesions after an episode of unstable coronary artery disease. Int J Card Imag 1995;11: 127–37.

    Article  CAS  Google Scholar 

  128. Katus HA, Remppis A, Neumann FJ, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 1991;83:902–12.

    PubMed  CAS  Google Scholar 

  129. Kearney P, Erbel R, Rupprecht HJ, et al. Difference in the morphology of unstable and stable coronary lesions and their impact on the mechanisms of angioplasty. An in vivo study with intravascular ultrasound. Eur Heart J 1996;17:721–30.

    PubMed  CAS  Google Scholar 

  130. Kern MJ, Dupouy P, Drury JH, et al. Role of coronary artery lumen enlargement in improving coronary blood flow after balloon angioplasty and stenting: A combined intravascular ultrasound doppler flow and imaging study. J Am Coll Cardiol 1997;29:1520–7.

    Article  PubMed  CAS  Google Scholar 

  131. Kern MJ, Puri S, Craig WR, et al. Hemodynamic rounds series II: Coronary hemodynamics for angioplasty and stenting after myocardial infarction: Use of absolute, relative coronary velocity and fractional flow reserve. Cath Cardiovasc Diagn 1998;45:174–82.

    Article  CAS  Google Scholar 

  132. Kern MJ. Appreciating a-adrenergic receptors and their role in ischemic left ventricular dysfunction. Circulation 1999;99:468–71.

    PubMed  CAS  Google Scholar 

  133. Kirigaya H, Aizawa T, Ogasawara K, et al. Evidence of acetylcholine induced vasospasm at sites of coronary angioplasty. Circulation 1990;82:III-616.

    Google Scholar 

  134. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patients care. Circulation 1987;76:1183–9.

    PubMed  CAS  Google Scholar 

  135. Kloner RA, Ganote CE, Jennings RB. The “no-reflow”-phenomenon after temporary occlusion in the dog. J Clin Invest 1974;54:1496–508.

    Article  PubMed  CAS  Google Scholar 

  136. Koller PT, Freed M, Grines CL, et al. Success, complications, and restenosis following rotational and transluminal extraction atherectomy of ostial stenoses. Cath Cardiovasc Diagn 1994;31:255–60.

    Article  CAS  Google Scholar 

  137. Kondo M, Tamura K, Tanio H, et al. Is ST segment re-elevation associated with reperfusion an indicator of marked myocardial damage after thrombolysis? J Am Coll Cardiol 1993;21:62–7.

    Article  PubMed  CAS  Google Scholar 

  138. Kong TQ, Davidson CJ, Meyers SN, et al. Prognostic implication of creatine kinase elevation following elective coronary artery interventions. JAMA 1997;277:461–6.

    Article  PubMed  CAS  Google Scholar 

  139. Kwon K, Freedman B, Wilcox I, et al. The unstable ST segment early after thrombolysis for acute infarction and its usefulness as a marker of recurrent coronary occlusion. Am J Cardiol 1991;67:109–15.

    Article  PubMed  CAS  Google Scholar 

  140. Laarman GG, Serruys PW, Suryapranata H, et al. Inability of coronary blood flow reserve measurements to assess the efficacy of coronary angioplasty in the first 24 hours in unselected patients. Am Heart J 1991;122:631–9.

    Article  PubMed  CAS  Google Scholar 

  141. Lambertz, H, Tries HP, Stein T, et al. Noninvasive assessment of coronary flow reserve with transthoracic signal-enhanced Doppler echocardiography. J Am Soc Echocardiogr 1999;12:186–95.

    Article  PubMed  CAS  Google Scholar 

  142. Lanzarini L, Fetiveau R, Previtali M, et al. Il test echo-dobutamina nella valutazione a breve termine die risultati dell’angioplastica coronarica. G Ital Cardiol 1994;24:107–14.

    PubMed  CAS  Google Scholar 

  143. Leach H, Blundell JW, Rowley JM, Turner DR. Acute ischaemic lesions in death due to ischaemic heart disease. An autopsy study of 333 cases of out-of-hospital death. Eur Heart J 1995;16:1181–5.

    PubMed  CAS  Google Scholar 

  144. Lee RT, Libby P. The unstable atheroma. Arterioscler Thromb Vasc Biol 1997;17:1859–67.

    PubMed  CAS  Google Scholar 

  145. Levine DC, Fallon JT. Significance of the angiographic morphology of localized coronary stenosis: Histopathologic correlations. Circulation 1982;66:316–20.

    Google Scholar 

  146. Lincoff AM, Topol EJ. Illusion of reperfusion. Does anyone achieve optimal reperfusion during acute myocardial infarction? Circulation 1993;88:1361–74.

    PubMed  CAS  Google Scholar 

  147. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease. Circulation 1988;78:1157–66.

    PubMed  CAS  Google Scholar 

  148. Liuzzo G, Biasucci LM, Gallimore JR, et al. Prognostic value of C-reactive proten and serum amyloid A protein in severe unstable angina. N Engl J Med 1994;331:417–24.

    Article  PubMed  CAS  Google Scholar 

  149. Lüscher TF, Tanner FC, Bühler FR. Serotonin und kardiovaskuläre Erkrankung. Dtsch Med Wochenschr 192;117:710–9.

    Article  Google Scholar 

  150. Mak KH, Challapalli R, Eisenberg MJ, et al. Effect of platelet glycoprotein IIb/IIIa receptor inhibition on distal embolization during percutaneous revascularization of aortocoronary saphenous vein grafts. Am J Cardiol 1997;80:985–8.

    Article  PubMed  CAS  Google Scholar 

  151. Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques. A role apoptosis in plaque thrombogenicity. Circulation 1999;99:348–53.

    PubMed  CAS  Google Scholar 

  152. Marcu L, Maarek JM, Fishbein M. Atherosclerotic lesions classification by time-resolved laser induced fluorescence spectroscopy: clinical identification of lipid-rich lesions. J Am Coll Cardiol 1999;33:66A

    Google Scholar 

  153. Maseri A, Rebuzzi AG, Cianflone D. Need for a composite risk stratification of patients with unstable coronary syndromes tailored to clinical practice. Circulation 1997;96:4141–2.

    PubMed  CAS  Google Scholar 

  154. Matsuzaki M, Gallagher KP, Kemper WS, et al. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 1983;68:170–82.

    PubMed  CAS  Google Scholar 

  155. Meisel SR, Shapiro H, Radnay J, et al. Increased expression of neutrophile and monocyte adhesion molecules LFA1 and MAC-1 and their ligand ICAM-1, VLA-4 throughout the acute phase of myocardial infarction. J Am Coll Cardiol 1998;31:120–5.

    Article  PubMed  CAS  Google Scholar 

  156. Meyer J, Schmitz H, Erbel R, et al. Treatment of unstable angina pectoris wwith percutaneous transluminal coronary angioplasty. Cath Cardiovasc Diagn 1981;7:361.

    Article  CAS  Google Scholar 

  157. Mintz GS, Pichard AD, Kovach JA, et al. Impact of preintervention intravascular ultrasound imaging on transcatheter treatment strategies in coronary artery disease. Am J Cardiol 1994;73:423–30.

    Article  PubMed  CAS  Google Scholar 

  158. Misra VK, Agirbasli M, Fischell TA. Coronary artery vasomotion after percutaneous transluminal coronary angioplasty. Clin Cardiol 1997;20:915–22.

    Article  PubMed  CAS  Google Scholar 

  159. Morrow DA, Rifai N, Antman EM, et al. C-reactive protein is a potent predictor of mortality independently of and in combination wtth troponin T in acute coronary syndromes: A TIMI 11A Substudy. J Am Coll Cardiol 1998;31:1460–5.

    Article  PubMed  CAS  Google Scholar 

  160. Mudra H, Klauss V, Blasini R, et al. Ultrasound guidance of Palmaz-Schatz intracoronary stenting with a combined intravascular ultrasound balloon catheter. Circulation 1994;90:1252–61.

    PubMed  CAS  Google Scholar 

  161. Mueller HW, Haught CA, McNatt JM, et al. Measurement of platelet-activating factor in a canine model of coronary thrombosis and in endarterectomy samples from patients with advanced coronary artery disease. Circ Res 1995;77:54–63.

    PubMed  CAS  Google Scholar 

  162. Mügge A, Heistad DD, Padgett RC, et al. Mechanism of contraction induced by human leukocytes in normal and atherosclerotic arteries. Circ Res 1991;69:871–80.

    PubMed  Google Scholar 

  163. Nagai T, Luo H, Atar S, et al. Intravascular ultrasound imaging of ruptured atherosclerotic plaques in coronary arteries. Am J Cardiol 1999;83:135–6.

    Article  PubMed  CAS  Google Scholar 

  164. Nesto RW, Waxman S, Mittleman MA, et al. Angioscopy of culprit coronary lesions in unstable angina pectoris and correlation of clinical presentation with plaque morphology. Am J Cardiol 1998;81:225–8.

    Article  PubMed  CAS  Google Scholar 

  165. Neuhaus KL, Feuerer W, Jeep-Tebbe S, et al. Improved thrombolysis with a modified dose regiment of recombinant tissue-type plasminogen activator. J Am Coll Cardiol 1989;14:1566–9.

    Article  PubMed  CAS  Google Scholar 

  166. Neumann FJ, Blasini R, Schmitt C, et al. Effect of glycoprotein IIb/IIIa receptor blockade on recovery of coronary flow and left ventricular function after the placement of coronary artery stents in acute myocardial infarction. Circulation 1998;98:2695–701.

    PubMed  CAS  Google Scholar 

  167. Neumann FJ, Kosa J, Dickenfeld T, et al. Recovery of myocardial perfusion in acute myocardial infarction after successful balloon angioplasty and stent placement in the infarct-related coronary artery. J Am Coll Cardiol 1997;30:1270–6.

    Article  PubMed  CAS  Google Scholar 

  168. Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991; 84:1087–99.

    PubMed  CAS  Google Scholar 

  169. Nixdorff U, Erbel R, Meyer J. Reinfarction related to PTCA-induced coronary embolism after successful thrombolytic therapy. J Intervent Cardiol 1989;2:97–101.

    Article  Google Scholar 

  170. Nobuyoshi M, Tanaka M, Nosaka H, et al. Progression of coronary atherosclerosis: Is coronary spasm related to prognosis? J Am Coll Cardiol 1991;18:904–10.

    Article  PubMed  CAS  Google Scholar 

  171. Noll G, Lüscher TF. The endothelium in acute coronary syndromes. Eur Heart J 1998;19:Suppl C:C30–8.

    PubMed  CAS  Google Scholar 

  172. O’Keefe HK, Rutherford BD, McConahay DR, et al. Early and late results of coronary angioplasty without antecedent thrombolytic therapy for acute myocardial infarction. Am J Cardiol 1989;64:1221–30.

    Article  PubMed  Google Scholar 

  173. Ochiai M, Isshiki T, Hirose Y, et al. Myocardial damage after successful thrombolysis is associated with the duration of ST reelevation at reperfusion. Clin Cardiol 1995;18:324–8.

    Article  PubMed  CAS  Google Scholar 

  174. Oesterle SN, Hayase M, Baim DS, et al. An embolization containment device. Cardiovasc Intervent 1999;47:243–50.

    Article  CAS  Google Scholar 

  175. Olatidoye AG, Wu AHB, Feng YJ, et al. Prognostic role of troponin T versus troponin I in unstable angina pectoris for cardiac events with meta-analysis comparing published studies. Am J Cardiol 1998;81:1405–10.

    Article  PubMed  CAS  Google Scholar 

  176. Oliveruous RA, Falsetti HL, Carroll RJ, et al. Atheroslerotic coronary artery aneurysm. Arch Intern Med 1974;134:1072–6.

    Article  Google Scholar 

  177. Overlie PA. Stents in acute myocardial infarction. Curr Opin Cardiol 1998;13:280–8.

    Article  PubMed  CAS  Google Scholar 

  178. Palmer FJ, Warren BA. Multiple cholesterol emboli syndrome complicating angiographic techniques. Clin Radiol 1988;39:519–22.

    Article  PubMed  CAS  Google Scholar 

  179. Piana RN, Moscucci M, Cohen DJ, et al. Palmaz-Schatz stenting for treatment of focal vein graft stenosis: immediate results and long-term outcome. J Am Coll Cardiol 1994;23:1296–304.

    Article  PubMed  CAS  Google Scholar 

  180. Pijls NHJ, Aengevaeren WRM, Uijen GJH, et al. Concept of maximal flow ratio for immediate evaluation of percutaneous transluminal coronary angioplasty result by videodensitometry. Circulation 1991;83:854–65.

    PubMed  CAS  Google Scholar 

  181. Popma JJ, Dehmer GJ, Eichhorn EJ Variability of coronary flow reserve obtained immediately after coronary angioplasty. Int J Card Imag 1990;6:31–8.

    Article  Google Scholar 

  182. Ravkilde J, Nissen H, Horder M, et al. Independent prognostic value of serum creatine kinase isoenzyme MB mass, cardiac troponin T and myosin light chain levels in suspected acute myocardial infarction. Analysis of 28 months of follow-up in 196 patients. J Am Coll Cardiol 1995;25:574–81.

    Article  PubMed  CAS  Google Scholar 

  183. Reifart N, Vandormael M, Krajcar M, et al. Randomized comparison of angioplasty of complex coronary lesions at a single center: Excimer laser, rotational atherectomy, and balloon angioplasty comparison (ERBAC) study. Circulation 1997;96:91–8.

    PubMed  CAS  Google Scholar 

  184. Reisman M, Harms V, Whitlow P, et al. Comparison of early and recent results with rotational atherectomy. J Am Coll Cardiol 1997;29:353–7.

    Article  PubMed  CAS  Google Scholar 

  185. Richardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:941–4.

    Article  PubMed  CAS  Google Scholar 

  186. Ritchie ME. Nuclear-KB is selectively and markedly activated in humans with unstable angina pectoris. Circulation 1998;98:1707–13.

    PubMed  CAS  Google Scholar 

  187. Roberts R, From RE. Management of acute coronary syndromes based on risk stratification by biochemical markers. Circulation 1998;98:1831–3.

    PubMed  CAS  Google Scholar 

  188. Rose J, Leischik R, Skyschally A, et al. Regional myocardial blood flow and function after coronary microembolisation. FASEB J 1997;11:A432.

    Google Scholar 

  189. Rosenschein U, Ellis SG, Yakubov SJ, et al. Histopathologic correlates of coronary lesion angiographic morphology: Lessons from a directional atherectomy experience. Coron Art Dis 1992;3:953–61.

    Google Scholar 

  190. Rosenschein U, Gaul G, Erbel R, et al. Percutaneous transluminal therapy of occluded saphenous vein grafts: can the challenge be met with ultrasound thrombolysis? Circulation 1999;99:26–9.

    PubMed  CAS  Google Scholar 

  191. Ross J Jr. Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 1991;83:1076–83.

    PubMed  Google Scholar 

  192. Rupprecht HJ, Brennecke R, Kottmeyer M, et al. Short- and long-term outcome after PTCA in patients with stable and unstable angina. Eur Heart J 1990;11:964–73.

    PubMed  CAS  Google Scholar 

  193. Ryan TJ, Anderson JL, Antman EM, et al. Guidelines for the management of patients with acute myocardial infarction. J Am Coll Cardiol 1996;28:1328–428.

    Article  PubMed  CAS  Google Scholar 

  194. Saber RS, Edwards WD, Balley KR, et al. Coronary embolization after balloon angioplasty or thrombolytic therapy: an autopsy study of 32 cases. J Am Coll Cardiol 1993;22:1283–8.

    Article  PubMed  CAS  Google Scholar 

  195. Saber RS, Edwards WD, Holmes DR Jr, et al. Balloon angioplasty of aortocoronary saphenous vein bypass grafts: a histopathologic study of six grafts from five patients, with emphasis on restenosis and embolic complications. J Am Coll Cardiol 1988;12:1501–9.

    Article  PubMed  CAS  Google Scholar 

  196. Safian RD, Gelbfish JS, Raymond EE, et al. Coronary atherectomy: clinical, angiographic, and histological findings and observations regarding potential mechanisms. Circulation 1990;82:69–79.

    PubMed  CAS  Google Scholar 

  197. Safian RD, Niazi KA, Strzelecki M, et al. Detailed angiographic analysis of high-speed mechanical rotational atherectomy in human coronary arteries. Circulation 1993;88:961–8.

    PubMed  CAS  Google Scholar 

  198. Saitoh M, Hasegawa K, Hasegawa K, et al. Detection of coronary artery disease using 12-lead electrocardiogram and simultaneous dual myocardial imaging with iodine-123-beta-methyl iodophenyl pentadecanoic acid (BMIPP) and thallium-201 in patients with unstable angina. Am J Cardiol 1996;77:143–8.

    Article  Google Scholar 

  199. Santoro GM, Valenti R, Buonamici P, et al. Relation between ST-segment changes and myocardial perfusion evaluated by myocardial contrast echocardiography in patients with acute myocardial infarction treated with direct angioplasty. Am J Cardiol 1998;82:932–7.

    Article  PubMed  CAS  Google Scholar 

  200. Savage MP, Douglas SS, Fischman DL, et al. Stent placement compared with balloon angioplasty for obstructed coronary bypass grafts. N Engl J Med 1997;337:740–7.

    Article  PubMed  CAS  Google Scholar 

  201. Schatz RA, Baim DS, Leon M, et al. Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation 1991;83:148–61.

    PubMed  CAS  Google Scholar 

  202. Schwartz RS, Murphy JG, Edwards WD, et al. Restenosis after balloon angioplasty. A practical proliferative model in porcine coronary arteries. Circulation 1990;82:2190–220.

    PubMed  CAS  Google Scholar 

  203. Serruys PW, di Mario, C, Piek J, et al. Prognostic value of intracoronary flow velocity and diameter stenosis in assessing the short-and long-term outcomes of coronary balloon angioplasty. The DEBATE Study (Doppler Endpoints Balloon Angioplasty Trial Europe). Circulation 1997;96:3369–77.

    PubMed  CAS  Google Scholar 

  204. Serruys PW, van den Brand M, Meij S, et al. Left ventricular performance, regional blood flow, wall motion, and lactate metabolism during transluminal angioplasty. Circulation 1984;70:25–36.

    PubMed  CAS  Google Scholar 

  205. Shoukfeh MM, Goldstein JA. Multiple unstable coronary plaques in patients with acute MI. Circulation 1995;92:I-342

    Google Scholar 

  206. Siegel RJ, Chae JS, Forrester S, et al. Angiography, angioscopy, and ultrasound imaging before and after percutaneous balloon angioplasty. Am Heart J 1990;120:1068–90.

    Article  Google Scholar 

  207. Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 1987;316:701–6.

    PubMed  CAS  Google Scholar 

  208. Simoons ML, Betriu A, Col J, et al. Thrombolysis with tissue plasminogen activator in acute myocardial infarction: no additional benefit from immediate percutaneous coronary angioplasty. Lancet 1988;1:197–202.

    Article  PubMed  CAS  Google Scholar 

  209. Simpson JB, Selmon MR, Robertson GC, et al. Transluminal atherectomy for occlusive peripheral vascular disease. Am J Cardiol 1988;61:96G-101G.

    Article  PubMed  CAS  Google Scholar 

  210. Sinapius D. Beziehungen zwischen Koronarthrombosen und Myokardinfarkten. Dtsch Med Wochenschr 1972;97:443–8.

    Article  PubMed  CAS  Google Scholar 

  211. Stähr P, Erbel R, Zotz R, et al. Ultraschallkontrast bei der Hochfrequenzrotationsangioplastie. Ultraschall Klin Prax 1994;9:116–21.

    Google Scholar 

  212. Stary HC, Bleakley Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation 1995;92:1355–74.

    PubMed  CAS  Google Scholar 

  213. Sunamura M, Di Mario C, Piek JJ, et al. Cyclic flow variations after angioplasty: A rare phenomenon predictive of immediate complications. Am Heart J 1996;131:843–8.

    Article  PubMed  CAS  Google Scholar 

  214. Takeuchi M, Himeno E. Does coronary stenting following balloon angioplasty improve myocardial fractional flow reserve? Cardiovasc Intervent Radiol 1998;21:459–63.

    Article  PubMed  CAS  Google Scholar 

  215. Tardiff BE, Califf RM, Tcheng JE, et al. Clinical outcomes after detection of elevated cardiac enzymes in patients undergoing percutaneous intervention. J Am Coll Cardiol 1999;33:88–96.

    Article  PubMed  CAS  Google Scholar 

  216. Teiger E, Garot J, Aptecar E, et al. Coronary blood flow reserve and wall motion recovery in patients undergoing angioplasty for myocardial infarction. Eur Heart J 1999;20:285–92.

    Article  PubMed  CAS  Google Scholar 

  217. Teirstein PS, Schatz RA, DeNardo SJ, et al. Angioscopic versus angiographic detection of thrombus during coronary interventional procedures. Am J Cardiol 1995;75:1083–7.

    Article  PubMed  CAS  Google Scholar 

  218. The CAPTURE Investigators. Randomized placebo-controlled trial of abciximab before and during intervention in refractory unstable angina: the CAPTURE study. Lancet 1997;349:429–35.

    Google Scholar 

  219. The EPIC Investigators. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 1994;330:956–61.

    Article  Google Scholar 

  220. The EPISTENT Investigators. Randomised placebo-controlled and balloon-angioplasty-controlled trial to assess safety of coronary stenting with use of platelet glycoprotein-IIb/IIIa blockade. Lancet 1998;352:87–92.

    Article  Google Scholar 

  221. The GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 1993;329:673–82.

    Article  Google Scholar 

  222. The PRISM-PLUS Study Investigators. Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q wave myocardial infarction. N Engl J Med 1998;338:1488–97.

    Article  Google Scholar 

  223. The RESTORE Investigators. Effects of platelet glycoprotein IIb/IIIa blockade with tirofiban on adverse cardiac events in patients with unstable angina or acute myocardial infarction undergoing coronary angioplasty. Circulation 1997;96:1445–53.

    Google Scholar 

  224. The TIMI Study Group. Comparison of invasive and conservative strategies after treatment with intravenous tissue plasminogen activator in acute myocardial infarction. Results of the thrombolysis in myocardial infraction (TIMI) phase II trial. N Engl J Med 1989;320:618–27.

    Google Scholar 

  225. Theroux P, Franklin D, Ross J Jr, et al. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacological agents in the dog. Circ Res 1974;35:896–908.

    PubMed  CAS  Google Scholar 

  226. Tillmanns H, Neumann FJ, Tiefenbacher C, et al. Activation of neutrophils in the microvasculature of the ischaemic and reperfused myocardium. Eur Heart J 1993;14:Suppl I:82–6.

    PubMed  Google Scholar 

  227. Tobis JM, Mallery JA, Gessert J, et al. Intravascular ultrasound cross-sectional arterial imaging before and after balloon angioplasty in vitro. Circulation 1989;80:873–82.

    PubMed  CAS  Google Scholar 

  228. Topol EJ, Leya F, Pinkerton CA, et al. A comparison of directional atherectomy with coronary angioplasty in patients with coronary artery disease. N Engl J Med 1993;329:221–7.

    Article  PubMed  CAS  Google Scholar 

  229. Toschi V, Vallo G, Lettino M, et al. Tissue factor modulates thrombogenicity of human atherosclerotic plaques. Circulation 1997;95:594–9.

    PubMed  CAS  Google Scholar 

  230. Toss H, Lindahl B, Siegbahn A, et al. for the FRISC Study Group. Prognostic influence of increased fibrinogen and C-reactive protein levels in unstable coronary artery disease. Circulation 1997;96:4204–10.

    PubMed  CAS  Google Scholar 

  231. Tsunoda T, Nakamura M, Wakatsuki T, et al. The pattern of alteration in flow velocity in the recanalized artery is related to left ventricular recovery in patients with acute infarction and successful direct balloon angioplasty. J Am Coll Cardiol 1998;32:338–44.

    Article  PubMed  CAS  Google Scholar 

  232. Ueda Y, Asakura M, Hirayama A, et al. Intracoronary morphology of culprit lesions after reperfusion in acute myocardial infarction: serial angioscopic observations. J Am Coll Cardiol 1996;27:606–10.

    Article  PubMed  CAS  Google Scholar 

  233. Unger P, Preumont N, Vachiery JL, et al. Assessment of coronary flow reserve by transesophageal echocardiography in cardiac transplant recipients. J Am Soc Echocardiogr 1998;11:612–9.

    Article  PubMed  CAS  Google Scholar 

  234. Uren NG, Gamici P, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med 1995;36:2032–6.

    PubMed  CAS  Google Scholar 

  235. Van Belle E, Lablanche JM, Bauters C, et al. Coronary angioscopic findings in the infarct-related vessel within 1 month of acute myocardial infarction: natural history and the effect of thrombolysis. Circulation 1998;97:26–33.

    PubMed  Google Scholar 

  236. Van Domburg RT, van Miltenburg A, van Zijl AJ, et al. Unstable angina: good long-term outcome after a complicated early course. J Am Coll Cardiol 1998;31:1534–9.

    Article  PubMed  Google Scholar 

  237. Van Liebergen RAM, Piek, JJ, Koch KT, et al. Immediate and long-term effect of balloon angioplasty or stent implantation on the absolute and relative coronary blood flow velocity reserve. Circulation 1998;98:2133–40.

    PubMed  Google Scholar 

  238. Verstraete M, Bory M, Collen D, et al. Randomized trial of intravenous recombinant tissue-type plasminogen activator versus intravenous streptokinase in acute myocardial infarction. Lancet 1985;I:842–7.

    Article  Google Scholar 

  239. Villanueva FS, Glasheen WP, Sklenar J, et al. Assessment of risk area during coronary occlusion and infarct size after reperfusion with myocardial contrast echocardiography using left and right atrial injections of contrast. Circulation 1993;88:596–604.

    PubMed  CAS  Google Scholar 

  240. Vogt A, von Essen R, Tebbe U, et al. Impact of early perfusion status of the infarct-related artery on short-term mortality after thrombolysis for acute myocardial infarction: retrospective analysis of four German multicenter studies. J Am Coll Cardiol 1993;21:1391–5.

    Article  PubMed  CAS  Google Scholar 

  241. Waksman R, Scott NA, Douglas JS, et al. Distal embolization is common after directional atherectomy in coronary arteries and vein grafts. Circulation 1993;88:1–299.

    Google Scholar 

  242. Waller BF, Gorfinkel HJ, Rogers FJ, et al. Early and late morphologic changes in major epicardial coronary arteries after percutaneous transluminal coronary angioplasty. Am J Cardiol 1984;53:42C-7C.

    Article  PubMed  CAS  Google Scholar 

  243. Walter H, Neumann FJ, Hadamitzky M, et al. Coronary artery stent placement with postprocedural antiplatelet therapy in acute myocardial infarction. Coron Art Dis 1998;9:577–82.

    Article  CAS  Google Scholar 

  244. Webster MWI, Chesebro JH, Smith HC, et al. Myocardial infarction and coronary artery occlusion: A prospective 5-year angiographic study. J Am Coll Cardiol 1990;115:218A.

    Article  Google Scholar 

  245. Weissman NJ. Intracoronary ultrasound. Coronary Art Dis 1998;9:435–41.

    Article  CAS  Google Scholar 

  246. Weissmann NJ, Weyman AE. Images in clinical medicine: directional atherectomy. N Engl J Med 1994;330:539.

    Article  Google Scholar 

  247. Werner GS, Sold G, Buchwald A, et al. Intravascular ultrasound imaging of human coronary arteries after percutaneous transluminal angioplasty: morphologic and quantitative assesment. Am Heart J 1990;122:212–20.

    Article  Google Scholar 

  248. White CJ, Ramee SR, Collins TJ, et al. Coronary thrombi increase PTCA risk. Angioscopy as a clinical tool. Circulation 1996;93:253–8.

    PubMed  CAS  Google Scholar 

  249. Wilcox JN, Smith KM, Schwarzt SM, et al. Localization of tissue factor in normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989;86:2839–43.

    Article  PubMed  CAS  Google Scholar 

  250. Williams MS, Coller BS, Vaananen HJ, et al. Activation of platelete in platelet-rich plasma by rotablation is speed-dependent and can be inhibited by abciximab (c7E3 Fab;ReoPro). Circulation 1998;98:742–8.

    PubMed  CAS  Google Scholar 

  251. Wilson RF, Johnson MR, Marcus ML, et al. The effect of coronary angioplasty on coronary flow reserve. Circulation 1988;77:873–85.

    PubMed  CAS  Google Scholar 

  252. Wilson RF, Lesser JR, Laxson DD, et al. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet 1989;1:807–11.

    Article  PubMed  CAS  Google Scholar 

  253. Wong SC, Baim DS, Schatz RA, et al. Immediate results and late outcomes after stent implantation in saphenous vein graft lesions: the multicenter US Palmaz-Schatz stent experience. J Am Coll Cardiol 1995;26:704–12.

    Article  PubMed  CAS  Google Scholar 

  254. Yock PG, Fitzgerald PJ. Intravascular ultrasound: state of the art and future directions. Am J Cardiol 1998;81:27E-32E.

    Article  PubMed  CAS  Google Scholar 

  255. Yokoyama I, Momomura SI, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472–7.

    Article  PubMed  CAS  Google Scholar 

  256. Zamorano J, Erbel R, Ge J, et al. Spontaneous plaque rupture visualized by intravascular ultrasound. Eur Heart J 1994;15:131–3.

    PubMed  CAS  Google Scholar 

  257. Zeiher AM, Drexler H, Saurbier B, et al. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993;92:652–62.

    Article  PubMed  CAS  Google Scholar 

  258. Zijlstra F, Jan de Boer M, Hoorntje JCA, et al. A comparison of immediate coronary angioplasty with intravenous streptokinase in acute myocardial infarction. N Engl J Med 1993;328:680–4.

    Article  PubMed  CAS  Google Scholar 

  259. Zotz RJ, Erbel R, Philipp A, et al. High-speed rotational angioplasty-induced echo contrast in vivo and in vitro optical analysis. Cath Cardiovasc Diagn 1992;26:98–109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimund Erbel MD, FACC, FESC.

Additional information

Supported by the German Research Foundation E-155/4-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erbel, R., Heusch, G. Coronary Microembolization—Its Role in acute coronary syndromes and interventions. Herz 24, 558–575 (1999). https://doi.org/10.1007/BF03044228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044228

Key Words

Schlüsselwörter

Navigation