Skip to main content
Log in

Simultaneous saccharification and fermentation of lignocellulose

Process evaluation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Simultaneous saccharification and fermentation (SSF) processes for producing ethanol from lignocellulose are capable of improved hydrolysis rates, yields, and product concentrations compared to separate hydrolysis and fermentation (SHF) systems, because the continuous removal of the sugars by the yeasts reduces the end-product inhibition of the enzyme complex. Recent experiments using Genencor 150L cellulase and mixed yeast cultures have produced yields and concentrations of ethanol from cellulose of 80% and 4.5%, respectively. The mixed culture was employed because B.clausenii has the ability to ferment cellobiose (further reducing end-product inhibition), while the brewing yeastS. cerevisiae provides a robust ability to ferment the monomeric sugars. These experimental results are combined with a process model to evaluate the economics of the process and to investigate the effect of alternative processes, conditions, and organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright, J. D., Power, A. J., and Douglas, L. J. (1986),Biotech. Bioeng. Symp. 17.

  2. Badger Engineers, Inc. (1984), Economic Feasibility Study of an Acid-Based Ethanol Plant, SERI Subcontract ZX-3-030-96-2.

  3. ICARUS Corp. (1987),COST Systems User’s Manual.

  4. Fan, L. T., Lee, Y. H., and Gharpuray, M. M. (1982),Adv. Biochem. Eng. 23, 158.

    Google Scholar 

  5. Cowling, E. G., and Kirk, T. K. (1976),Biotech. Bioeng. Symp. 6, 59.

    Google Scholar 

  6. Grethlein, H. D., Allen, D. C, and Converse, A. O. (1984),Biotech. Bioeng. 26, 1498.

    Google Scholar 

  7. Grohmann, K., Torget, R., and Himmel, M. (1985),Biotech. Bioeng. Symp. 15.

  8. Brownell, H. H., and Saddler, J. N. (1984),Biotech. Bioeng. Symp. 14, 55.

    CAS  Google Scholar 

  9. Holtzapple, M. T., and Humphrey, A. E. (1984),Biotech. Bioeng. 26, 670.

    Article  CAS  Google Scholar 

  10. Torget, R., Grohmann, K., and Wright, J. (1987),Appl. Biochem. Biotech.

  11. Mandels, M. (1981), inAnn. Reports Ferm. Proc. 5, pp. 35–78.

    Google Scholar 

  12. McLean, D., and Podruzny, M. F. (1985),Biotech. Lett. 9, 683.

    Article  Google Scholar 

  13. Montenecourt, B. S. (1983),Trends Biotech. 1, 156.

    Article  CAS  Google Scholar 

  14. Hendy, N., Wilke, C. R., and Blanch, H. W. (1982),Biotech. Lett. 4, 785.

    Article  CAS  Google Scholar 

  15. Wood, T. M. (1985),Biochem. Soc. Trans. 13, 407.

    CAS  Google Scholar 

  16. Wyman, C. E., Spindler, D. D., Grohmann, K., and Lastick, S. M.Biotech Bioeng. Symp. 17, 221.

  17. Spindler, D. D., Wyman, C. E., Mohagheghi, A., and Grohmann, K. (1987),Appl. Biochem. Biotech.

  18. Takagi, M., Abe, S., Suzuki, S., Emert, G. H., and Yata, N. (1977),Proc. Bioconversion Symp., IIT Delhi, India, pp. 551–571.

    Google Scholar 

  19. Lastick, S. M., Spindler, D. D., Grohmann, K. (1982), inWood and Agricultural Residues. Research on Use for Feed, Fuels and Chemicals,Proc. of the Conf., sponsored by Amer. Chem. Soc., Kansas City, MO, Sept 12–17, E. J. Soltes, ed.

  20. Lastick, S. M., Spindler, D., Terrell, S., and Grohmann K. (1984), inThe World Biotech Report 1984, USA Proc. Biotech.84, pp. 593–600.

    Google Scholar 

  21. Mukataka, S., Tada, M., and Takahashi, J. (1983),J. Ferment. Technol. 61, 389.

    Google Scholar 

  22. Sakata, M., Ooshima, H., and Harano, Y. (1985),Biotechnol. Lett. 7, 689.

    Article  CAS  Google Scholar 

  23. Tanaka, M., Takenawa, S., Matsuno, R., and Kamibuko, T. (1978),J. Ferment. Technol. 56, 108.

    CAS  Google Scholar 

  24. Reese, E. T., and Ryu, D. Y. (1980),Enzyme Microb. Technol. 2, 239.

    Article  CAS  Google Scholar 

  25. Kim, M. H., Lee, S. B., Ryu, D. Y., and Reese, E. T. (1982),Enzyme Microb. Technol. 4, 99.

    Article  CAS  Google Scholar 

  26. Nystrom, J. M., and Arden, R. K. (1976),Proc. Biochem. 11, 26.

    CAS  Google Scholar 

  27. Wilke, C. R., and Blanch, H. W. (1985), Process Development Studies on the Bioconversion of Cellulase and Production of Ethanol,Annual Report to the Solar Energy Research Institute.

  28. Blotkamp, P. J., Takagi, M., Pemberton, M. S., and Emert, G. H. (1978),AIChE Symp. Ser. 181, 85.

    Google Scholar 

  29. Pemberton, M. S., Brown, R. D., and Emert, G. H. (1980),Can. J. of Chem. Eng. 58, 723.

    Article  CAS  Google Scholar 

  30. Gosh, P., Pamment, N. B., and Martin, W. R. B. (1982),Enzyme Microb. Technol. 4, 425.

    Article  Google Scholar 

  31. Takagi, M. (1984),Biotech. Bioeng. 26, 1506.

    Article  CAS  Google Scholar 

  32. Ooshima, H., Ishitani, Y., and Harano, Y. (1985),Biotech. Bioeng. 27, 389.

    Article  CAS  Google Scholar 

  33. Ghose, T. K., Roychodhury, P. K., and Ghosh, P. (1984),Biotech. Bioeng. 26, 377.

    Article  CAS  Google Scholar 

  34. Orichowskyj, S. T. (1982), Recovery of Cellulase Enzymes by Counter Current Adsorption, MS thesis, LBL-15153.

  35. Vallander, L., and Eriksson, K. E. (1985),Biotech. Bioeng. 27, 650.

    Article  CAS  Google Scholar 

  36. Eriksson, K. E. (1987), Am. Chem. Soc. Nat. Meeting, Denver, CO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J.D., Wyman, C.E. & Grohmann, K. Simultaneous saccharification and fermentation of lignocellulose. Appl Biochem Biotechnol 18, 75–90 (1988). https://doi.org/10.1007/BF02930818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930818

Index Entries

Navigation