Skip to main content
Log in

Determinants of structure in aquatic non-pelagic protozoan communities

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Although microbes have traditionally been used as models for testing ecological theory, research on the organization of these communities has largely been isolated from other areas of community ecology. Early studies indicated that microbial populations can form dynamic, interacting assemblages. Observations of distributional patterns suggest that certain deterministic forces regulate community structure. It appears that protozoans are tolerant of a wide range of environmental conditions although evidence for this is largely based on gross environmental analyses. Laboratory studies have suggested the importance of negative and positive biotic interactions in determining community membership, but little field evidence for this exists. The importance of transport processes in controlling community composition is being increasingly recognized. All three types of processes likely act to regulate the colonization and successional dynamics of these communities. A simple model is presented to promote the development of synthetic field and laboratory studies to test for different determinants of community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. O., 1988. Comparative protozoology. Springer-Verlag, New York.

    Google Scholar 

  • Bamforth, S. S., 1958. Ecological studies on the planktonic Protozoa of a small pond.Limnol. Oceanogr. 3: 398–412.

    Google Scholar 

  • Barsdate, R. J., Prentki, R. T. and Fenchel, T., 1974. Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect of bacterial grazers.Oikos 25:239–251.

    Article  Google Scholar 

  • Brown, R. M., Jr., Larson, D. A. and Bold, H. C. 1964. Airborne algae: Their abundance and heterogeneity.Science 143:583–585.

    Article  Google Scholar 

  • Cairns, J., Jr. 1964. The chemical environment of common freshwater protozoa.Not. Nat. 365:1–6.

    Google Scholar 

  • Cairns, J., Jr. 1967. The probable existence of synergistic interactions among different species of protozoans.Rev. Biol. 6:103–108.

    Google Scholar 

  • Cairns, J., Jr. 1971. Factors affecting the number of species in fresh-water protozoan communities. In: The structure and function of freshwater microbial communities, J. Cairns, Jr. ed. Virginia Polytechnic Institute and State University, Blacksburg, VA, Research Division Monograph 3, pp. 219–247.

    Google Scholar 

  • Cairns, J., Jr. 1991. Probable consequences of a cosmopolitan distribution.Spec. Sci. Tech. 14(1): 41–50.

    Google Scholar 

  • Cairns, J., Jr. and Orvos, D. R., 1989. Ecological consequence assessment: Predicting effects of hazardous substances upon aquatic ecosystems using ecological engineering, pp. 409–442.In: Ecological engineering: An introduction to ecotechnology, W. J. Mitsch and S. E. Jorgensen, eds. J. Wiley & Sons, Inc., NY.

    Google Scholar 

  • Cairns, J., Jr. and Pratt, J. R., 1986a. Ecological consequence assessment: Effects of bioengineered organisms.Water Resour. Bull. 22(2):171–182.

    Google Scholar 

  • Cairns, J., Jr. and Pratt, J. R., 1986b. Factors affecting the acceptance and rejection of genetically altered microorganisms by established natural aquatic communities, pp. 207–221.In: Aquatic toxicology and environmental fate, ninth symposium, STP921, T. M. Poston, and R. Purdy, eds, American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Cairns, J., Jr. and Ruthven, J. A., 1970. Artificial microhabitat size and the number of colonizing protozoan species.Trans. Am. Microsc. Soc. 89(1):100–109.

    Article  Google Scholar 

  • Cairns, J., Jr. and Ruthven, J., 1972. A. test of the cosmopolitan distribution of fresh-water protozoans.Hydrobiologia 39:405–427.

    Article  Google Scholar 

  • Cairns, J., Jr. and Yongue, W. H. Jr. 1973a. A comparison of the protozoan communities in a coastal plain river through space time.Revista de Biologia 9(1–4):15–34.

    Google Scholar 

  • Cairns, J., Jr. and Yongue, W. H., Jr., 1973b. The effect of an influx of new species on the diversity of protozoan communities.Rev. Biol. 9(1–4):187–206.

    Google Scholar 

  • Cairns, J., Jr., Dahlberg, M. L., Dickson, K. L., Smith, N., and Waller, W. T., 1969. The relationship of fresh-water protozoan communities to the MacArthur-Wilson equilibrium model.Am. Nat. 103: 439–454. Faure-Fremiet, E. 1951. Associations infusoriennes aBeggiatod. Hydrobiologia 3:65–71.

    Article  Google Scholar 

  • Cairns, J., Jr., Yongue, W. H., Jr., and Boatin, H., Jr., 1973. The relationship between number of protozoan species and duration of habitat immersion.Rev. Biol. 9(1–4):35–42.

    Google Scholar 

  • Cairns, J., Jr., Ruthven, J. A., and Kaesler, R. L., 1974. Distribution of Protozoa in a small stream.Am. Midland Nat. 92(2):406–414.

    Article  Google Scholar 

  • Cairns, J., Jr., Kaesler, R. L., Kuhn, D. L., Plafkin, J. L., and Yongue, W. H., Jr., 1976. The influence of natural perturbation on protozoan communities inhabiting artificial substrates.Trans. Am. Microsc. Soc. 95(4):646–653.

    Article  Google Scholar 

  • Cairns, J., Jr., Plafkin, J. L., Kaesler, R. L., and Lowe, R. L., 1983. Early colonization patterns of diatoms and protozoa in fourteen fresh-water lakes.J. Protozool. 30(1):47–51.

    Google Scholar 

  • Cody, M. L. 1989. Discussion: Structure and assembly of communities, pp. 227–241.In: Perspectives in ecological theory, J. Roughgarden, R. M. May, and S. A. Levin. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Cole, J. J., 1982. Interactions between bacteria and algae in aquatic ecosystems.Ann. Rev. Ecol. Syst. 13: 191–314.

    Article  Google Scholar 

  • Connell, J. H. and Slatyer, R. O., 1977. Mechanisms of succession in natural communities and their role in community stability and organization.Am. Nat. 111:1119–1144.

    Article  Google Scholar 

  • Connor, E. F. and McCoy, E. D., 1979. The statistics and biology of the species-area relationship.Am. Nat. 113:791–833.

    Article  Google Scholar 

  • Curds, C. R., 1977. Interactions involving protozoa, pp. 69–106.In: Aquatic microbiology, F. A. Skinner and J. M. Shewan, eds. Academic Press, New York.

    Google Scholar 

  • Diamond, J. M., 1975. Assembly of species communities, pp. 342–444.In: Ecology and evolution of communities, M. L. Cody and J. M. Diamond, eds. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Evans, F. R., 1958. Competition for food between two carnivorous ciliates.Trans. Am. Microsc. Soc. 77(4): 390–395.

    Article  Google Scholar 

  • Fairchild, G. W., Lowe, R. L., and Richardson, W. B., 1985. Algal periphyton growth on nurtient-diffusing substrates: In sity bioassay.Ecology 66:466–472.

    Article  Google Scholar 

  • Faure-Fremiet, E., 1967. Chemical aspects, of ecology, pp. 21–54.In: Chemical zoology, M. Florkin and B. T. Sheer, eds. Academic Press, London.

    Google Scholar 

  • Fenchel, T., 1975. The quantitative importance of the benthic microfauna of an arctic tundra pond.Hydrobiologia 46:445–464.

    Article  Google Scholar 

  • Fenchel, T., 1987. Ecology of Protozoa: The biology of free-living phagotrophic protists. Springer-Verlag, New York.

    Google Scholar 

  • Finlay, B. J., Bannister, P., and Stewart, J., 1979. Temporal variation in benthic ciliates and the application of association analysis.Freshw. Biol. 9:45–53.

    Article  Google Scholar 

  • Gause, G. F., 1934. The struggle for existence. Hafner Publishing Co., New York.

    Google Scholar 

  • Gause, G. F., Nastukova, O. K., and Alpatov, W. W., 1934. The influence of biologically conditioned media on the growth of a mixed population ofParamecium caudatum andP. aurelia.J. Anim. Ecol. 34:222–230.

    Google Scholar 

  • Gause, G. F., Smaragdova, N. P., and Witt, A. A., 1936. Further studies of interaction between predator and prey.J. Anim. Ecol. 5:1–18.

    Article  Google Scholar 

  • Gill, D. E. and Hairston, N. G., 1972. The dynamics of a natural population ofParamecium and the role of interspectific competition in community structure.J. Anim. Ecal. 41:137–151.

    Article  Google Scholar 

  • Greig-Smith, P., 1986. Choas or order-organization, pp. 19–29.In: Community ecology: Pattern and process, J. Kikkawa and D. J. Anderson, Blackwell Scientific, Oxford.

    Google Scholar 

  • Hairston, N. G., 1958. Observations on the ecology ofParamecium, with comments on the species problem.Evolution 12:440–450.

    Article  Google Scholar 

  • Hairston, N. G. and Kellerman, S. L., 1965. Competition between varieties 2 and 3 ofP. aurelai: The influence of temperature in a food limited system.Ecology 46:134–139.

    Google Scholar 

  • Hairston, N. G., Smith, F. E., and Slobodkin, L. B., 1968. The relationship between species diversity and stability: An experimental approach with protozoa and bacteria.Ecology 49:1091–1101.

    Article  Google Scholar 

  • Hausman, L. A., 1917. Observations on the ecology of protozoa.Am. Nat. 51:157–172.

    Article  Google Scholar 

  • Have, A., 1987. Experimental island biogeography: Immigration and extinction of ciliates in microcosms.Oikos 50:218–224.

    Article  Google Scholar 

  • Kudo, R. R., 1966. Protozoology, 5th ed. Charles Thomas, Springfield, IL.

    Google Scholar 

  • Kurihara, Y., 1959. Synecological analysis of the biotic community in microcosms: V. Studies on the relations of the occurrence of protozoa to pH with special reference to the amount of matter in media of bamboo containers.Sci. Rep. Tohoku Univ. Ser. IV (Biol.) 25:173–184.

    Google Scholar 

  • Lackey, J. B., 1938. A study of some ecological factors affecting the distribution of protozoa.Ecol. Monogr. 8:501–527.

    Article  Google Scholar 

  • Lamberti, G. A. and Resh, V. H., 1983. Stream periphyton and insect herbivores: An experimental study of grazing by a caddisfly population.Ecology 64:1124–1135.

    Article  Google Scholar 

  • Lamberti, G. A. and Moore, J. W., 1984. Aquatic insects as primary consumers, pp. 164–195,In: The ecology of aquatic insects, V. H. Resh and D. M. Rosenberg, eds. Praeger Scientific, New York.

    Google Scholar 

  • Legner, M., 1973. Experimental approach to the role of Protozoa in aquatic ecosystems.Am. Zool. 13: 177–191.

    Google Scholar 

  • Lewin, R., 1986. Supply-side ecology.Science 234:25–27.

    Article  Google Scholar 

  • Lilly, D. M. and Stillwell, R. H., 1965. Probiotics: Growth promoting factors produced by microorganisms.Science 147:747–748.

    Article  Google Scholar 

  • Luckinbill, L. S., 1973. Coexistence in laboratory ofParamecium aurelia andDidinium nasutum.Ecology 54: 1320–1327. Picken, L. E. R., 1937. The structure of some protozoan communities.J. Ecol. 25: 368–384.

    Article  Google Scholar 

  • MacArthur, R. H. and Wilson, E. O., 1967. The equilibrium theory of island biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Maguire, B. M., Jr., 1959. Passive overland transport of small aquatic organisms.Ecology 40:312.

    Article  Google Scholar 

  • Maguire, B. M., Jr., 1963. The exclusion ofColopoda (Ciliata) from superficially favorable habitats.Ecology 44:781–784.

    Article  Google Scholar 

  • Maguire, B. M., Jr., 1977. Community structure of protozoans and algae with particular emphasis on recently colonzed bodies of water. In Auatic Microbial Communities, J. Cairns, Jr., ed. Garland Publishing, Inc., NY, pp. 355–397.

    Google Scholar 

  • Maguire, B. M., Jr., Belk, D. and Wells, G., 1968. Control of community structure by mosquito larvae.Ecology 49:207–210.

    Article  Google Scholar 

  • Mast, E. C. and Pace, D. M., 1938. The effect of substances produced byChilomonas paramecium on the rate of reproduction.Physiol. Zool. 11: 359–382.

    Google Scholar 

  • McCormick, P. V., 1989. Mechanisms of benthic algal succession in streams. Ph. D. Dissertation, department of Biology, University of Louisville, Louisville, KY.

    Google Scholar 

  • McCormick, P. V. and Cairns, J. Jr., 1990. Microbial colonization dynamics in temporary isolated aquatic systems.Hydrobiologia 196(3): 229–253.

    Article  Google Scholar 

  • McCormick, P. V. and Stevenson, R. J., 1989. Population and community responses of benthic algae to snail grazing in different nutrient environments.J. North. Am. Benthol. Soc. 8(2): 162–172.

    Article  Google Scholar 

  • McCormick, P. V. and Stevenson, R. J. In press, Mechanisms of benthic algal succession in different flow environments.Ecology.

  • McCormick, P. V., Stewart, R. M. and Cairns, J., Jr. 1987. Effect of distance from a source pool on protozoan colonization of isolated aquatic systems.J. Freshwater Ecol. 4(1):1–15.

    Google Scholar 

  • McCormick, P. V., Pratt, J. R., Jenkins, D. G. and Cairns, J. Jr., 1988. A comparison of protozoan, algal and metazoan colonization of artificial substrates of differing size.Trans. Am. Microsc. Soc. 107 (3): 259–268.

    Article  Google Scholar 

  • McCormick, P. V., Smith, E. P. and Cairns, J. Jr., 1991. The relative importance of population versus community processes in protistan primary succession in isolated aquatic systems.Hydrobiologia 213: 83–98.

    Article  Google Scholar 

  • Mucibabic, S., 1957. The growth of mixed populations ofChilomonas paramecium andTetrahymna pyriformis.J. Gen. Microbiol. 16:561–571.

    Google Scholar 

  • Muller, W. A. and Lee, J. J., 1977. Biological interactions and the realized niche ofEuplotes vannus from the salt marsh Aufwuchs.J. Protozool. 24(4):523–527.

    Google Scholar 

  • Noland, L. E., 1925. Factors influencing the distribution of freshwater ciliates.Ecology 6:437–452.

    Article  Google Scholar 

  • Noland, L. E. and Godjics, M., 1967. Ecology of free-living Protozoa, pp. 215–266.In: Research in Protozoology, Vol. 2, T. T. Chen, ed. Pergamon Press, Oxford.

    Google Scholar 

  • Overeem, M. A. van, 1937. On green organisms occurring in the lower trophosphere.Rec. Trav. Botan. Neerl. 34:389–439.

    Google Scholar 

  • Paine, R. T., 1966. Food web complexity and species diversity.Am. Nat. 100:65–75.

    Article  Google Scholar 

  • Patrick, R., 1967. The effect of invasion rate, species pool, and size of area on the structure of the diatom community.Proc. Natl. Acad. Sci. 58:1335–1342.

    Article  Google Scholar 

  • Patrick, R., 1970. Benthic stream communities.Am. Sci. 58:546–549.

    Google Scholar 

  • Patrick, R., Cairns, J. Jr., and Roback, S. S., 1967. An ecosystematic study of the fauna and flora of the Savannah River.Proc. Acad. Nat. Sci. Phil. 118(5):109–407.

    Google Scholar 

  • Pickett, S. T. A., Collins, S. L., and Armesto, J. J., 1987. Models, mechanisms and pathways of succession.Bot. Rev. 53(3):335–371.

    Google Scholar 

  • Pratt, J. R. and Cairns, J. Jr., 1985. Long term patterns of protozoan colonization in Douglas Lake.J. Protozool. 32(1):95–98.

    Google Scholar 

  • Pratt, J. R., Cairns, J. Jr., and Stewart, P. M., 1985. Development of microbial communities in mined lakes.In: Wetlands and water management on mined lands, R. P. Brooks, D. E. Samuels, and J. B. Hill, eds, Pennsylvania State University, University Park, PA, pp. 239–259.

    Google Scholar 

  • Pratt, J. R., Lang, B. Z., Kaesler, R. L., and Cairns, J. Jr., 1986. Effect of seasonal changes on protozoans inhabiting artificial substrates in a small pond.Arch. Protistenkd. 131:45–57.

    Google Scholar 

  • Prime, B. and Habdija, L., 1987. Ciliated colonization of artificial substrates in different saprobic conditions in a running water.Acta. Hydrochim. Hydrobiol. 15(5):7–494.

    Google Scholar 

  • Proctor, V. W., 1959. Dispersal of fresh-water algae by migatory birds.Science 130:623–624.

    Article  Google Scholar 

  • Provasoli, L., 1958. Nutrition and ecology of Protozoa and algae.Ann. Rev. Microbiol. 12:279–308.

    Article  Google Scholar 

  • Revill, D. L., Stewart, K. W. and Schlichting, H. E., 1967. Passive dispersal of viable algae and protozoa by certain craneflies and midges.Ecology 48(6):1023–1027.

    Article  Google Scholar 

  • Revsbech, N.P., 1983. In situ measurement of oxygen profiles of sediments by use of oxygen microelectrodes. pp. 265–273.In: Polarographic oxygen sensors, E. Gnaiger and H. Forstner, eds. Springer, New York.

    Google Scholar 

  • Riber, H. H. and Wetzel, R. G., 1987. Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton.Limnol. Oceanogr. 32(6):1181–1194.

    Article  Google Scholar 

  • Robertson, T. B., 1921. The influence of mutual continguity upon reproductive rate and part played there by the “x-factor” in bacterized infusions which stimulate the multiplication of infusoria.Biochem. J. 15: 1240–1247.

    Google Scholar 

  • Robertson, T. B., 1924. Allelocatalytic effect in cultures ofColpidium in hay-infusion and in synthetic media.Biochem. J. 18:612–619.

    Google Scholar 

  • Roughgarden, J., 1989. The structure and assembly of communities, pp. 203–226.In: Perspectives in ecological theory, J. Roughgarden, R. M. May, and S. A. Levin. Princeton University Press Princeton, NJ.

    Google Scholar 

  • Sandon, H., 1932. The food of Protozoa.Publ. Fac. Sci. Egypt. Univ. 1:1–187.

    Google Scholar 

  • Schlichting, H. E., 1960. The role of waterfowl in the dispersal of algae.Trans. Am. Microsc. Soc. 79: 160–166.

    Article  Google Scholar 

  • Schlichting, H. E., 1961. Viable species of algae and Protozoa in the atmosphere.Lloydia 24(2):81–88.

    Google Scholar 

  • Schlichting, H. E., 1964. Meteorological conditions affecting the dispersal of air-borne algae and Protozoa.Lloydia 27(1):64–78.

    Google Scholar 

  • Skadowsky, S. N., 1923. Hydrophysiologische und hydrobiologische Beobachtungen uber die Bedeutung der Reaction des Mediums fur die Susswasserorganismen. Verh. Internat. Ver. Theoret.

  • Steinman, A. D., McIntire, C. D., Gregory, S. V., Lamberti, G. A., and Ashkenas, L. R., 1987. Effects of herbivore type and density on taxonomic structure and physiognomy of algal assemblages in laboratory streams.J. North. Am. Benth. Soc.,6(4):175–188.

    Article  Google Scholar 

  • Stewart, K. W. and Schlichting, H. E., 1966. Dispersal of algae and Protozoa by selected aquatic insects.J. Ecol. 54:551–562.

    Article  Google Scholar 

  • Stewart, P. M., Pratt, J. R., Cairns, J. Jr. and Lowe, R. L., 1985. Diatom and protozoan species accurual on artificial substrates in lentic habitats.Trans. Am. Microsc. Soc. 104:369–377.

    Article  Google Scholar 

  • Stewart, P. M., Smith, E. P., Pratt, J. R., McCormick, P. V. and Cairns, J. Jr., 1986. Multivariate analysis of protozoan communities in lentic systems.J. Protozool. 33(2):152–156.

    Google Scholar 

  • Stewart, P. M., Smith, E. P., and Cairns, J. Jr., 1987. Relationship of the physico-chemical environment to diatom and Protozoa communities: A multivariate approach.Arch. Protistenkd. 134:331–341.

    Google Scholar 

  • Sumner, W. T. and McIntire, C. D., 1982. Grazer-periphyton interactions in laboratory streams.Archiv fur Hydrobiol. 93:135–157.

    Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: An experimental and theoretical approach.Ecology 58:338–348.

    Article  Google Scholar 

  • Tilman, D., 1989. Discussion: Population dynamics and species interactions, pp. 89–100.In: Perspectives in ecological theory, J. Roughgarden, R. M. May and S. A. Levin. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Uhlig, G. and Kimor, B., 1977. Protozoology and community structure.In: Proceedings of the Fifth International Congress of Protozoology, pp.75–77.

  • Vandermeer, J. H., 1969. The competitive structure of communities: an experimental approach with protozoa.Ecology 50(3):362–371.

    Article  Google Scholar 

  • Weatherby, J. H., 1929 Physiol. Zool.2:375–394.

    Google Scholar 

  • Webb, M. G., 1956. An ecological study of brackish water ciliates.J. Anim. Ecol 25:148–175.

    Article  Google Scholar 

  • Williams, C. B., 1964. Patterns in the balance of nature and related problems in quantitative ecology. Academic Press, London.

    Google Scholar 

  • Whittaker, R. H., 1975. Communities and ecosystems, 2nd ed. Macmillan Publishing Co., New York.

    Google Scholar 

  • Woodruff, L. L., 1913. The effect of excretion producets of infusoria on the same and on different species, with special reference to the protozoan sequence in infusions.J. Exp. Zool. 12(2):575–582.

    Article  Google Scholar 

  • Yongue, W. H., Jr. and Cairns, J., Jr., 1971. Micro-habitat pH differences from those of surrounding water.Hydrobiologia 38(3–4):453–461.

    Google Scholar 

  • Yongue, W. H., Jr., Cairns, J., Jr., and Boatin, H. C., 1973. A comparison of fresh water protozoan communities in geographically proximate but chemically dissimilar bodies of water.Arch. Protistenkd. 115:154–161. u.Angew. Linnol. 1:341.

    Google Scholar 

  • Zhukov, B. F., Balonov, I. M., and Yagoda, S. N., 1975.Hydrobiol. J. 11:71–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cairns, J., McCormick, P.V. Determinants of structure in aquatic non-pelagic protozoan communities. Chin. J. Ocean. Limnol. 11, 215–228 (1993). https://doi.org/10.1007/BF02850853

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02850853

Key words

Navigation