Skip to main content

Drivers That Structure Biodiversity in the Plankton

  • Chapter
  • First Online:
Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective

Abstract

Biodiversity is a key component regulating the structure and function of planktonic ecosystems and has important ramifications for the biogeochemical footprint of phytoplankton communities. Here, we explore ideas regarding the factors that generate and maintain plankton species diversity. Recently developed methods to investigate the genetics and behavior of planktonic organisms in the laboratory and in situ have provided insights into plankton ecology and evolution, including phylogeny as well as organism interactions with the biotic and abiotic environment. We suggest that the inclusion of an organismal focus that incorporates intra-specific variation could reveal factors driving marine biodiversity, strengthen the theoretical underpinnings of plankton ecology, and enhance our understanding of the population dynamics of microbes. Identification of these structuring mechanisms is not only scientifically challenging but also has significant implications for how we understand the functioning of planktonic ecosystems and our ability to predict how these ecosystems may respond to changing climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ (2010) Patterns of diversity in marine phytoplankton. Science 327:1509–1511

    Article  CAS  PubMed  Google Scholar 

  • Benincà E, Huisman J, Heerkloss R, Johnk KD, Branco P, Van Nes EH, Scheffer M, Ellner SP (2008) Chaos in a long-term experiment with a plankton community. Nature 451:822–825

    Article  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Secq M-PO-L, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8, e63091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand LE (1984) The salinity tolerance of 46 marine-phytoplankton isolates. Estuar Coast Shelf Sci 18:543–556

    Article  CAS  Google Scholar 

  • Brand LE, Guillard RRL, Murphy LS (1981) A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res 3:193–201

    Article  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33(1):1–36

    Article  CAS  Google Scholar 

  • Casteleyn G, Leliaert F, Backeljau T, Debeer A-E, Kotaki Y, Rhodes L, Lundholm N, Sabbe K, Vyverman W (2010) Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc Natl Acad Sci 107:12952–12957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins S (2011) Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc R Soc B Biol Sci 278:247–255

    Article  Google Scholar 

  • Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569

    Article  CAS  PubMed  Google Scholar 

  • Collins S, Rost B, Rynearson TA (2014) Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl 7:140–155

    Article  CAS  PubMed  Google Scholar 

  • Cropp RA, Norbury J (2012) The mechanisms of coexistence and competitive exclusion in complex plankton ecosystem models. Ecosystems 15:200–212

    Article  Google Scholar 

  • Crowe SA, Dossing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538

    Article  CAS  PubMed  Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Coordinators TO, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237): DOI:10.1126/science.1261605

    Google Scholar 

  • Du X, Peterson W, McCulloch A, Liu G (2011) An unusual bloom of the dinoflagellate Akashiwo sanguinea off the central Oregon, USA, coast in autumn 2009. Harmful Algae 10(6):784–793

    Article  Google Scholar 

  • Falkowski PG, Fenchel T, DeLong EF (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320(5879):1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson KA, Strom SL, Crim R, Coyne KJ (2011) Interstrain variability in physiology and genetics of Heterosigma akashiwo (Raphidophycae) from the west coast of North America. J Phycol 47(1):25–35

    Article  PubMed  Google Scholar 

  • Gäbler-Schwarz S, Medlin LK, Leese F (2015) A puzzle with many pieces: the genetic structure and diversity of Phaeocystis antarctica Karsten (Prymnesiophyta). Eur J Phycol 50:112–124

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Hafner Press, New York, NY

    Book  Google Scholar 

  • Gray MW, Lukes J, Archibald JM, Keeling PJ, Doolittle FW (2010) Irremediable complexity? Science 330(5005):920–921

    Article  CAS  PubMed  Google Scholar 

  • Green JC, Course PA, Tarran GA (1996) The life-cycle of Emiliania huxleyi: a brief review and a study of relative ploidy levels analysed by flow cytometry. J Mar Syst 9:33–44

    Article  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Härnström K, Ellegaard M, Andersen TJ, Godhe A (2011) Hundred years of genetic structure in a sediment revived diatom population. Proc Natl Acad Sci 108:4252–4257

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328(5985):1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410

    Article  Google Scholar 

  • Huisman J, Johansson AM, Folmer EO, Weissing FJ (2001) Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol Lett 4:408–411

    Article  Google Scholar 

  • Hutchins DA, Fu F-X, Webb EA, Walworth N, Tagliabue A (2013) Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat Geosci 6:790–795

    Article  CAS  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95(882):137–145

    Article  Google Scholar 

  • Iglesias-Rodriguez D, Schofield OM, Batley J, Medlin LK, Hayes PK (2006) Intraspecific genetic diversity in the marine cocolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. J Phycol 42:526–536

    Article  CAS  Google Scholar 

  • Károlyi G, Péntek A, Scheuring I, Tél T, Toroczkai Z (2000) Chaotic flow: the physics of species coexistence. Proc Natl Acad Sci 97(25):13661–13665. doi:10.1073/pnas.240242797

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174

    Article  CAS  PubMed  Google Scholar 

  • Kiørboe T (2008) A mechanistic approach to plankton ecology. Princeton University Press, Princeton, NJ, p 224

    Google Scholar 

  • Lakeman M, Cattolico RA (2007) Cryptic diversity in phytoplankton cultures is revealed using a simple plating technique. J Phycol 43:663–674

    Article  Google Scholar 

  • Lee CE, Remfert JL, Gelembiuk GW (2003) Evolution of physiological tolerance and performance during freshwater invasions. Integr Comp Biol 43(3):439–449

    Article  PubMed  Google Scholar 

  • Levin S (1976) Population dynamic models in heterogeneous environments. Annu Rev Ecol Syst 7:287–310

    Article  Google Scholar 

  • Levin S (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Menden-Deuer S (2010) High-correlation of individual motility enhances population dispersal rates in a heterotrophic protist. PLoS Comput Biol 6(10):e1000943

    Article  Google Scholar 

  • Menden-Deuer S, Montalbano A (2015) Bloom formation potential in the toxic dinoflagellate Akashiwo sanguinea: clues from movement behaviors and growth characteristics. Harmful Algae 47:75–85. doi:10.1016/j.hal.2015.06.001

    Article  Google Scholar 

  • Menden-Deuer S, Rowlett J (2014) Many ways to stay in the game: individual variability maintains high biodiversity in planktonic microorganisms. J R Soc Interface 11:20140031

    Article  PubMed  PubMed Central  Google Scholar 

  • Moal J, Martin-Jezequel V, Harris RP, Samain JF, Poulet SA (1987) Inter- specific and intraspecific variability of the chemical-composition of marine-phytoplankton. Oceanol Acta 10(3):339–346

    CAS  Google Scholar 

  • Record NR, Pershing AJ, Maps F (2013) The paradox of “the paradox of the plankton”. ICES J Mar Sci 70:1–5

    Article  Google Scholar 

  • Richlen ML, Erdner DL, McCauley LAR, Libera K, Anderson DM (2012) Extensive genetic diversity and rapid population differentiation during blooms of Alexandrium fundyense (Dinophyceae) in an isolated salt pond on Cape Cod, MA, USA. Ecol Evol 2:2583–2594

    Article  Google Scholar 

  • Rynearson TA, Armbrust EV (2000) DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol Oceanogr 45:1329–1340

    Article  Google Scholar 

  • Rynearson TA, Armbrust EV (2004) Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). J Phycol 40:34–43

    Article  Google Scholar 

  • Rynearson TA, Armbrust EV (2005) Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Mol Ecol 14:1631–1640

    Article  PubMed  Google Scholar 

  • Rynearson TA, Newton JA, Armbrust EV (2006) Spring bloom development, genetic variation and population succession in the planktonic diatom Ditylum brightwellii. Limnol Oceanogr 51:1249–1261

    Article  CAS  Google Scholar 

  • Rynearson TA, Richardson K, Lampitt RS, Sieracki ME, Poulton AJ, Lyngsgaard MM, Perry MJ (2013) Major contribution of diatom resting spores to vertical flux in the sub-polar North Atlantic. Deep Sea Res I Oceanogr Res Papers 82:60–71

    Article  CAS  Google Scholar 

  • Sanjuan R, Moya A, Elena S (2004) The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci U S A 101:8396–8401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaum E, Rost B, Millar AJ, Collins C (2013) Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nat Clim Change 3:298–302

    Article  CAS  Google Scholar 

  • Smetacek V (2012) Making sense of ocean biota: how evolution and biodiversity of land organisms differ from that of the plankton. J Biosci 37:589–607

    Article  PubMed  Google Scholar 

  • Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338(6110):1085–1088

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Ward B (2002) How many species of prokaryotes are there? Proc Natl Acad Sci U S A 99(16):10234–10236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White AE, Watkins-Brandt KE, McKibben SM, Wood AM, Hunter M, Forster Z, Du X, Peterson WT (2014) Large-scale bloom of Akashiwo sanguinea in the Northern California current system in 2009. Harmful Algae 37:38–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana A. Rynearson .

Editor information

Editors and Affiliations

Tatiana A. Rynearson and Susanne Menden-Deuer

Tatiana A. Rynearson and Susanne Menden-Deuer

Since the New York Times featured our wedding announcement, there is little information that is publicly inaccessible about our relationship. Thankfully, the intricate details of our intersecting science interests were of minor interest to the NYT fact checker, so a few things are left to be told. We both had our first immersion in oceanography on a long cruise to the southern ocean polar frontal zone as part of the Southern Ocean JGOFS effort, led by mentor Professor V. Smetacek. During the cruise, a look through the microscope at the phytoplankton community composition gave a more accurate account of location and water mass than most other metrics measured on the cruise. This left us both with a lasting impression of the importance of an organismal perspective and a deep desire to understand the factors driving these distributions. As any good couple, we subsequently took vastly different approaches to pursue our scientific interests. One of us uses molecular tools to investigate the evolution, speciation, and biogeochemical function of phytoplankton and feeding ecology of zooplankton, while the other has focused on linking microscopic predator-prey behaviors with their population-level ramifications of plankton production, food web structure, and patchiness. With the help of supportive mentors, we have been fortunate to spend long stretches of our career in the same place, first at the Alfred Wegener Institute as technician and M.Sc. student, then as graduate students at the University of Washington, and finally as faculty members at the Graduate School of Oceanography, University of Rhode Island. Although we do not try to work together formally, sometimes it is unavoidable and we have coauthored a few papers. Nonetheless, our most productive and joyful collaboration matured in December 2013 when our daughter was born.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rynearson, T.A., Menden-Deuer, S. (2016). Drivers That Structure Biodiversity in the Plankton. In: Glibert, P., Kana, T. (eds) Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-30259-1_2

Download citation

Publish with us

Policies and ethics