Skip to main content
Log in

Effects in rats of iron on lead deprivation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In two fully crossed, two-factor experiments, F1 generation male rats were fed a basal diet supplemented with lead (lead acetate) at 0 or 2 μg/g and iron (ferric sulfate) at 50 or 250 μg/g (Experiment 1). Supplements in Experiment 2 were lead at 0 or 1 μg/g and iron at 50, 250, or 1000 μg/g. After 28 or 50 d in Experiment 1, and 35 d in Experiment 2, a relationship between lead and iron was found. Body weight was lower in low-lead than lead-supplemented 28-d-old rats regardless of dietary iron, whereas hematocrit and hemoglobin were lower in low-lead than lead-supplemented rats fed 50 μg iron/g diet. A similar finding was obtained with hematocrit and hemoglobin in 35-d-old rats. Dietary lead did not affect rats fed 250 or 1000 μg iron/g diet. Also, feeding low dietary lead did not affect 50-d-old rats regardless of dietary iron. Liver and bone concentrations of lead were markedly affected by dietary lead and iron. The concentration of lead in liver and bone was lower in low-lead than lead-supplemented rats. Compared to rats fed 50 μg iron/g diet, rats fed 250 μg iron/g diet exhibited a decreased lead concentration in liver and bone. This decrease was accentuated by lead supplementation. The findings suggest that lead acted pharmacologically to affect iron metabolism in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schwarz, inTrace Element Metabolism in Animals, vol. 2, W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds., Univ. Park Press, Baltimore, MD, 1974, pp. 355–380.

    Google Scholar 

  2. A. M. Reichlmayr-Lais and M. Kirchgessner,Z. Tierphysiol. Tierernahrg. u. Futtermittelkde.,46, 1 (1981).

    CAS  Google Scholar 

  3. A. M. Reichlmayr-Lais and M. Kirchgessner,Arch. Tierernahrg. 31, 731 (1981).

    CAS  Google Scholar 

  4. A. M. Reichlmayr-Lais and M. Kirchgessner,Z. Tierphysiol. Tierernahrg. u. Futtermittelkde,46, 8 (1981).

    CAS  Google Scholar 

  5. M. Kirchgessner and A. M. Reichlmayr-Lais, inTrace Element Metabolism in Man and Animals, vol. 4, J. McC. Howell, J. M. Gawthrone, and C. L. White, eds., Australian Academy of Science, Canberra, 1981, pp. 390–393.

    Google Scholar 

  6. A. M. Reichlmayr-Lais and M. Kirchgessner,Z. für Tierphysiologie Tierernahrung und Futtermittelkunde,46, 145 (1981).

    CAS  Google Scholar 

  7. M. Kirchgessner and A. M. Reichlmayr-Lais,Biol. Trace Element Res. 3, 279 (1981).

    CAS  Google Scholar 

  8. M. Kirchgessner and A. M. Reichlmayr-Lais,Inter. J. Vit. Nutr. Res. 51, 421 (1981).

    CAS  Google Scholar 

  9. A. M. Reichlmayr-Lais and M. Kirchgessner,Zbl. Vet. Med. A. 28, 410 (1981).

    CAS  Google Scholar 

  10. M. Kirchgessner and A. M. Reichlmayr-Lais,Ann. Nutr. Metab. 26, 50 (1981).

    Article  Google Scholar 

  11. A. M. Reichlmayr-Lais and M. Kirchgessner,Ann. Nutr. Metab. 25, 281 (1981).

    PubMed  CAS  Google Scholar 

  12. F. H. Nielsen, D. R. Myron, S. H. Givand, and D. A. Ollerich,J. Nutr. 105, 1607 (1975).

    PubMed  CAS  Google Scholar 

  13. E. Pietsch, G. Blinoff-Achapkin, H. Gruss, A. Kotowski, M. DuMarie and G. Nachod, inGmelins Handbuch der Anorganischen Chemie, Verlag Chemie, Berlin, 1957, pp. 439–462.

    Google Scholar 

  14. F. H. Nielsen, T. R. Shuler, T. J. Zimmerman, M. E. Collings, and E. O. Uthus,Biol. Trace Element Res. 1, 325 (1979).

    Article  Google Scholar 

  15. W. E. Harris and B. Kratochvil, inChemical Separation and Measurements, Saunders, Philadelphia, PA, 1974, pp. 124–132.

    Google Scholar 

  16. F. H. Nielsen and B. Bailey,Lab. Anim. Sci. 29, 502 (1979).

    PubMed  CAS  Google Scholar 

  17. F. H. Nielsen, D. R. Myron, S. H. Givand, T. J. Zimmerman, and D. A. Ollerich,J. Nutr. 105, 1620 (1975).

    PubMed  CAS  Google Scholar 

  18. D. C. Manning and W. Slavin,Anal. Chem. 50, 1234 (1978).

    Article  CAS  Google Scholar 

  19. H. Scheffé,The Analysis of Variance, Wiley, New York, 1959, pp. 90–137.

    Google Scholar 

  20. P. N. Davis, L. C. Norris, and F. H. Kratzer,J. Nutr. 78, 445 (1962).

    PubMed  CAS  Google Scholar 

  21. A. R. Sherman, H. A. Guthrie, I. Wolinsky, and I. M. Zulak,J. Nutr. 108, 152 (1978).

    PubMed  CAS  Google Scholar 

  22. K. R. Mahaffey-Bix and R. A. Goyer,J. Lab. Clin. Med. 79, 128 (1972).

    Google Scholar 

  23. K. R. Mahaffey,Nutr. Rev. 39, 353 (1981).

    Article  CAS  Google Scholar 

  24. G. B. Forbes and J. C. Reina,J. Nutr. 102, 647 (1972).

    PubMed  CAS  Google Scholar 

  25. K. Kostial, I. Simonovic, and M. Pisonic,Nature 233, 564 (1971).

    Article  PubMed  CAS  Google Scholar 

  26. A. Cantarow and M. Trumper, inLead Poisoning, Williams and Wilkins, Baltimore, MD, 1944, pp. 45–49.

    Google Scholar 

  27. L. Pecora, S. Fati, R. Molé, and C. Pesaresi, inProceedings XIV International Congress on Occupational Health, vol. III, Madrid, 1963, pp. 1068–1069.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uthus, E.O., Nielsen, F.H. Effects in rats of iron on lead deprivation. Biol Trace Elem Res 16, 155–163 (1988). https://doi.org/10.1007/BF02797100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02797100

Index Entries

Navigation