Skip to main content
Log in

Modeling of peptides and proteins in a membrane environment: I. A solvation model mimicking a lipid bilayer

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A theoretical solvation model of peptides and proteins that mimics the heterogeneous membrane-water system was proposed. Our approach is based on the combined use of atomic parameters of solvation for water and hydrocarbons, which approximates the hydrated polar groups and acyl chains of lipids, respectively. This model was tested in simulations of several peptides: a nonpolar 20-mer polyleucine, a hydrophobic peptide with terminal polar groups, and a strongly amphiphilic peptide. The conformational space of the peptides in the presence of the membrane was studied by the Monte Carlo method. Unlike a polar solvent and vacuum, the membrane-like environment was shown to stabilize the α-helical conformation: low-energy structures have a helicity index of 100% in all cases. At the same time, the energetically most favorable orientations of the peptides relative to the membrane depend on their hydrophobic properties: nonpolar polyleucine is entirely immersed in the bilayer and the hydrophobic peptide with polar groups at the termini adopts a transbilayer orientation, whereas the amphiphilic peptide lies at the interface parallel to the membrane plane. The results of the simulations agree well with the available experimental data for these systems. In the following communications of this series, we plan to describe applications of the solvation model to membrane-bound proteins and peptides with biologically important functional activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASP:

atomic solvation parameters

MC:

Monte Carlo

MD:

molecular dynamics

TM:

transmembrane

References

  1. Deber, C.M. and Li, S.-C.,Biopolymers, 1995, vol. 37, pp. 295–318.

    Article  PubMed  CAS  Google Scholar 

  2. Bechinger, B.,J. Membr. Biol., 1997, vol. 156, pp. 197–211.

    Article  PubMed  CAS  Google Scholar 

  3. Hunt, J.F., Earnest, T.N., Bousch, O., Kalghatgi, K., Reilly, K., Horváth, C., Rothschild, K.J., and Engelman, D.M.,Biochemistry, 1997, vol. 36, pp. 15156–15176.

    Article  PubMed  CAS  Google Scholar 

  4. Edholm, O. and Jähnig, F.,Biophys. Chem., 1988, vol. 30, pp. 279–292.

    Article  PubMed  CAS  Google Scholar 

  5. Milik, M. and Skolnick, J.,Proteins, 1993, vol. 15, pp. 10–25.

    Article  PubMed  CAS  Google Scholar 

  6. Huang, P. and Loew, G.H.,J. Biomol. Struct. Dyn., 1995, vol. 12, pp. 937–956.

    PubMed  CAS  Google Scholar 

  7. Nolde, D.E., Arseniev, A.S., Vergoten, G., and Efremov, R.G.,J. Biomol. Struct. Dyn., 1997, vol. 15, pp. 1–18.

    PubMed  CAS  Google Scholar 

  8. Ducarme, P., Rahman, M., and Brasseur, R.,Proteins, 1998, vol. 30, pp. 357–371.

    Article  PubMed  CAS  Google Scholar 

  9. Efremov, R.G., Nolde, D.E., Vergoten, G., and Arseniev, A.S.,Theor. Chem. Acc., 1999, vol. 101, pp. 170–174.

    CAS  Google Scholar 

  10. Efremov, R.G., Nolde, D.E., Vergoten, G., and Arseniev, A.S.,Biophys. J., 1999, vol. 76, pp. 2448–2459.

    PubMed  CAS  Google Scholar 

  11. Efremov, R.G., Nolde, D.E., Vergoten, G., and Arseniev, A.S.,Biophys. J., 1999, vol. 76, pp. 2460–2471.

    PubMed  CAS  Google Scholar 

  12. Popot, J.-L.,Curr. Opin. Struct. Biol., 1993, vol. 3, pp. 532–540.

    Article  CAS  Google Scholar 

  13. Lemmon, M. and Engelman, D.M.,Q. Rev. Biophys., 1994, vol. 27, pp. 157–218.

    Article  PubMed  CAS  Google Scholar 

  14. Sansom, M.S.P.,Curr. Opin. Struct. Biol., 1998, vol. 8, pp. 237–244.

    Article  PubMed  CAS  Google Scholar 

  15. Tielman, D.P., Marrink, S.J., and Berendsen, H.J.C.,Biochim. Biophys. Acta, 1997, vol. 1331, pp. 235–270.

    Google Scholar 

  16. Jähnig, F. and Edholm, O.,Z. Phys. B: Condens. Matter, 1990, vol. 78, pp. 137–143.

    Article  Google Scholar 

  17. Jähnig, F. and Edholm, O.,J. Mol. Biol., 1992, vol. 226, pp. 837–850.

    Article  PubMed  Google Scholar 

  18. Edholm, O., Berger, O., and Jähnig, F.,J. Mol. Biol., 1995, vol. 250, pp. 94–111.

    Article  PubMed  CAS  Google Scholar 

  19. Gazit, E., La Rocca, P., Sansom, M.S.P., and Shai, Y.,Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 12 289–12 294.

    Article  CAS  Google Scholar 

  20. Némethy, G., Pottle, M.S., and Sheraga, H.A.,J. Phys. Chem., 1983, vol. 87, pp. 1883–1887.

    Article  Google Scholar 

  21. Von Freyberg, B. and Braun, W.,J. Comput. Chem., 1991, vol. 12, pp. 1065–1076.

    Article  Google Scholar 

  22. Metropolis, N., Rosenbluth, A.W., Teller, A.H., and Teller, E.,J. Chem. Phys., 1953, vol. 21, pp. 1087–1092.

    Article  CAS  Google Scholar 

  23. Kabsch, W. and Sander, C.,Biopolymers, 1983, vol. 22, pp. 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  24. Eisenberg, D., Weiss, R.M., and Terwilliger, T.C.,Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 140–144.

    Article  PubMed  CAS  Google Scholar 

  25. Donnelly, D., Overington, J.P., Ruffle, S.V., Nugent, J.H., and Blundell, T.L.,Protein Sci., 1993, vol. 2, pp. 55–70.

    PubMed  CAS  Google Scholar 

  26. Koradi, R., Billeter, M., and Wüthrich, K.,J. Mol. Graphics, 1996, vol. 14, pp. 51–55.

    Article  CAS  Google Scholar 

  27. Chipot, C. and Pohorille, A.,J. Am. Chem. Soc., 1998, vol. 120, pp. 11 912–11 924.

    Article  CAS  Google Scholar 

  28. Brasseur, R., Pillot, T., Lins, L., Vandekerckhove, J., and Rosseneu, M.,Trends Biochem. Sci., 1997, vol. 22, pp. 167–171.

    Article  PubMed  CAS  Google Scholar 

  29. Bechinger, B., Gierasch, L.M., Montal, M., Zaloff, M., and Opella, S.J.,Solid State NMR Spec., 1996, vol. 7, pp. 185–192.

    Article  CAS  Google Scholar 

  30. Munoz, V., Thompson, P.A., Hofrichter, J., and Eaton, W.A.,Nature, 1997, vol. 390, pp. 196–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Efremov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolde, D.E., Volynskii, P.E., Arseniev, A.S. et al. Modeling of peptides and proteins in a membrane environment: I. A solvation model mimicking a lipid bilayer. Russ J Bioorg Chem 26, 115–124 (2000). https://doi.org/10.1007/BF02759157

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02759157

Key words

Navigation