Skip to main content
Log in

Towards understanding lamin gene regulation

  • Published:
J Biosci Aims and scope Submit manuscript

Abstract

The lamins are components of the nuclear lamina, which forms a fibrous meshwork lining the inner nuclear membrane. Lamina-membrane interactions play a crucial role during nuclear disassembly and reassembly at mitosis, whereas lamina-chromatin association has been proposed to be essential for chromatin organization. The composition of the lamina changes considerably during embryonic development and cell differentiation. Recent studies have provided insights into the regulation of the lamin genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi U, Cohn J, Buhle L and Gerace L 1986 The nuclear lamina is a meshwork of intermediate-type filaments;Nature (London)323 560–564

    Article  CAS  Google Scholar 

  • Benavente R, Krohne G and Franke W W 1985 Cell type-specific expression of nuclear lamina proteins during developmentof Xenopus laevis;Cell 41 177–190

    Article  PubMed  CAS  Google Scholar 

  • Bossie A. A and Sanders M M 1993 A cDNA fromDrosophila melanogaster encodes a lamin C-like intermediate filament protein;J. Cell Sci,104 1263–1272

    PubMed  CAS  Google Scholar 

  • Bridger J M, Kill Ï R, O’Farrell M and Hutchison A. J 1993 Internal lamin structures within GI nuclei of human dermal fibroblasts;J. Cell Sci. 104 297–306

    PubMed  CAS  Google Scholar 

  • Burke B and Gerace L 1986 A cell free system to study reassembly of the nuclear envelope at the end of mitosis;Cell 44 639–652

    Article  PubMed  CAS  Google Scholar 

  • Dodemont H, Riemer D and Weber K 1990 Structure of an invertebrate gene encoding cytoplasmic intermediate filament (IF) proteins: implications for the origin and the diversification of IF proteins;EMBO J. 9 4083–4094

    PubMed  CAS  Google Scholar 

  • Doring V and Stick R 1990 Gene structure of nuclear lamin LIII ofXenopus laevis; a model for the evolution of IF proteins from a lamin-like ancestor;EMBO J. 9 4073–4081

    PubMed  CAS  Google Scholar 

  • Enoch T, Peter M, Nurse P and Nigg E A 1991 p34cdc2 acts as a lamin kinase in fission yeast;J. Cell Biol. 112 797–807

    Article  PubMed  CAS  Google Scholar 

  • Fatima S and Parnaik V K 1991 A novel cross-linking technique to study nuclear lamina-membrane interactions;Curr. Sci. 61 356–358

    Google Scholar 

  • Fisher D Z, Chaudhary N and Blobel G 1986 cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins;Proc. Natl. Acad. Sci. USA 83 6450–6454

    Article  PubMed  CAS  Google Scholar 

  • Foisner R and Gerace L 1993 Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation;Cell 73 1267–1279

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K and Hotta Y 1993 cDNA cloning of a germ cell-specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells;EMBO J. 12 97–106

    PubMed  CAS  Google Scholar 

  • Georgatos S D, Stournaras C and Blobel G 1988 Heterotypic and homotypic associations between the nuclear lamins: site-specificity and control by phosphorylation;Proc. Natl. Acad. Sci. USA 85 4325–4329

    Article  PubMed  CAS  Google Scholar 

  • Gerace L, Comeau C and Benson M 1984 Organisation and modulation of nuclear lamina structure;J. Cell Sci. Suppl. 1 137–160

    PubMed  CAS  Google Scholar 

  • Glass J R and Gerace L 1990 Lamins A and C bind and assemble at the surface of mitotic chromosomes;J. Cell Biol. 111 1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Glomset J A, Gelb M M and Fransworth A. C 1990 Prenyl proteins in eukaryotic cells: a new type of membrane anchor;Trends Biochem. Sci. 15 139–142

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Landesman Y, Drees B, Bare J W, Saumweber H, Paddy M R, Sedat J W, Smith D E, Benton B M and Fisher P A 1988Drosophila nuclear lamin precursor Dmo is translated from either of two developmental regulated mRNA species apparently encoded by a single gene;J. Cell Biol. 106 585–596

    Article  PubMed  CAS  Google Scholar 

  • Heald R and McKeon F 1990 Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis;Cell 61 579–589

    Article  PubMed  CAS  Google Scholar 

  • Heitlinger E, Peter M, Haner M, Lustig A, Aebi U and Nigg E A 1991 Expression of chicken lamin B2 inEscherichia coli: characterization of its structure, assembly, and molecular interactions;J. Cell Biol. 113 485–495

    Article  PubMed  CAS  Google Scholar 

  • Hennekes H, Peter M, Weber K and Nigg E A 1993 Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2;J. Cell Biol. 120 1293–1304

    Article  PubMed  CAS  Google Scholar 

  • Hoger T H, Krohne G and Franke W W 1988 Amino acid sequence and molecular characterization of murine lamin B as deduced from cDNA clones;Eur. J. Cell Biol. 47 283–290

    PubMed  CAS  Google Scholar 

  • Hoger T H, Krohne G and Kleinschmidt J A 1991 Interaction ofXenopus lamins A and LII with chromatinin vitro mediated by a sequence element in the carboxy terminal domain;Exp. Cell Res. 197 280–289

    Article  PubMed  CAS  Google Scholar 

  • Hoger T H, Zatloukal K, Waizenegger I and Krohne G 1990 Characterization of a second highly conserved B-type lamin present in cells previously thought to contain only a single B-type lamin;Chromosoma 99 379–390

    Article  PubMed  CAS  Google Scholar 

  • Lehner A. F, Stick R, Eppenberger H M and Nigg E A 1987 Differential expression of nuclear lamin proteins during chicken development;J. Cell Biol. 105 577–587

    Article  PubMed  CAS  Google Scholar 

  • Lin F and Worman H J 1993 Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C;J. Biol. Chem. 268 16321–16326

    PubMed  CAS  Google Scholar 

  • Luderus M M E, de Graaf A, Mattia E, den Blaauwen J L, Grande M A, de Jong L and van Driel R 1992 Binding of matrix attachment regions to lamin Bl;Cell 70 949–959

    Article  PubMed  CAS  Google Scholar 

  • Luscher B, Brizuela L, Beach D and Eisenman R N 1991 A role for the p34cdc2 kinase and phosphatases in the regulation of phosphorylation and disassembly of lamin B2 during the cell cycle;EMBO J. 10 865–875

    PubMed  CAS  Google Scholar 

  • Maison C, Horstmann H and Georgatos S D 1993 Regulated docking of nuclear membrane vesicles to vimentin filaments during mitosis;J. Cell Biol. 123 1491–1505

    Article  PubMed  CAS  Google Scholar 

  • McKeon F D, Kirschner M W and Caput D 1986 Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins;Nature (London)319 463–468

    Article  CAS  Google Scholar 

  • Meier J and Georgatos S D 1994 Type B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: implications for nuclear reassembly;EMBO J. 13 1888–1898

    PubMed  CAS  Google Scholar 

  • Nakajima N and Sado T 1993 Nucleotide sequence of a mouse lamin A cDNA and its deduced amino acid sequence;Biochim. Biophys. Acta 1171 311–314

    PubMed  CAS  Google Scholar 

  • Newport J W, Wilson K L and Dunphy W G 1990 A lamin-independent pathway for nuclear envelope assembly;J. Cell Biol,111 2247–2259

    Article  PubMed  CAS  Google Scholar 

  • Ozaki T and Sakiyama S 1992 Lamin A gene expression is specifically suppressed inV-src transformed cells;FEBS Lett. 312 165–168

    Article  PubMed  CAS  Google Scholar 

  • Paddy M R, Belmont A S, Saumweber H, Agard D A and Sedat J W 1990 Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery;Cell 62 89–106

    Article  PubMed  CAS  Google Scholar 

  • Pandey S and Parnaik V K 1991 Developmental changes in the organization of the nuclear lamina in mouse liver;Biochem. Biophys. Res. Commun. 179 1083–1087

    Article  Google Scholar 

  • Peter M, Nakagawa J, Doree M, Labbe J-C and Nigg E A 1990In vitro disassembly of the nuclear lamina and M-phase specific phosphorylation of lamins by cdc2 Kinase;Cell 61 591–602

    Article  PubMed  CAS  Google Scholar 

  • Pfaller R, Smythe C and Newport J W 1991 Assembly/disassembly of the nuclear envelope membrane: cell cycle-dependent binding of nuclear membrane vesicles to chromatinin vitro;Cell 65 209–217

    Article  PubMed  CAS  Google Scholar 

  • Pollard K M, Chan E K L, Grant B J, Sullivan K F, Tan E M and Glass A. A 1990In vitro post translational modification of lamin B cloned from a human T-cell line;Mol. Cell Biol. 10 2164–2175

    PubMed  CAS  Google Scholar 

  • Riedel W and Werner D 1989 Nucleotide sequence of the full-length mouse lamin C cDNA and its deduced amino-acid sequence;Biochim. Biophys. Acta 1008 119–122

    PubMed  CAS  Google Scholar 

  • Riemer D, Dodemont H and Weber K 1993 A nuclear lamin of the nematodeCaenorhabditis elegans with unusual structural features: cDNA cloning and gene organization;Eur. J. Cell Biol. 62 214–223

    PubMed  CAS  Google Scholar 

  • Rober RRA, Weber K and Osborn M 1989 Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study;Development 105 365–378

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989Molecular cloning: A laboratory manual (New York: Cold Spring Harbor Laboratory)

    Google Scholar 

  • Stewart C and Burke B 1987 Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B;Cell 51 383–392

    Article  PubMed  CAS  Google Scholar 

  • Stick R and Hausen P 1985 Changes in the nuclear lamina composition during early development ofXenopus laevis;Cell 41 191–200

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar L and Rao M R S 1990 Stage-dependent changes in localization of a germ cell-specific lamin during mammalian spermatogenisis;J. Biol. Client. 265 22526–22532

    CAS  Google Scholar 

  • Vester B, Smith A, Krohne G and Benavente R 1993 Presence of a nuclear lamina in pachytene spermatocytes of the rat;J. Cell Sci. 104 557–563

    PubMed  Google Scholar 

  • Vorburger K, Lehner A. F, Kitten G, Eppenderger H M and Nigg E A 1989 A second higher vertebrate B-type lamin: cDNA sequence determination andin vitro processing of chicken lamin B2;J. Mol. Biol. 208 405–415

    Article  PubMed  CAS  Google Scholar 

  • Ward G E and Kirschner M W 1990 Identification cell cycle-regulated phosphorylation sites on nuclear lamin C;Cell 61 561–577

    Article  PubMed  CAS  Google Scholar 

  • Wolin S L, Krohne G and Kirschner M W 1987 A new lamin inXenopus somatic tissues displays strong homology to human lamin A;EMBO J. 6 3809–3818

    PubMed  CAS  Google Scholar 

  • Worman H J, Yuan J, Blobel G and Georgatos S D 1988 A lamin B receptor in the nuclear envelope;P roc. Natl. Acad. Sci. USA 85 8531–8534

    Article  CAS  Google Scholar 

  • Zehner Z E 1991 Regulation of intermediate filament gene expression;Curr. Opin. Cell Biol. 3 67–74

    Article  PubMed  CAS  Google Scholar 

  • Zewe M, Hoger T H, Fink T, Lichter P, Krohne G and Franke W W 1991 Gene structure and chromosomal localization of the murine lamin B2 gene;Eur. J. Cell Biol. 56 342–350

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parnaik, V.K., Jonnalagadda, V.S. & Hamid, Q.A. Towards understanding lamin gene regulation. J Biosci 19, 615–628 (1994). https://doi.org/10.1007/BF02703206

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703206

Keywords

Navigation