Skip to main content
Log in

Methyl directed DNA mismatch repair inVibrio cholerae

  • Published:
J Biosci Aims and scope Submit manuscript

Abstract

Mismatches in DNA occur either due to replication error or during recombination between homologous but non-identical DNA sequences or due to chemical modification of bases. The mismatch in DNA, if not repaired, result in high spontaneous mutation frequency. The repair has to be in the newly synthesized strand of the DNA molecule, otherwise the error will be fixed permanently. Three distinct mechanisms have been proposed for the repair of mismatches in DNA in prokaryotic cells and gene functions involved in these repair processes have been identified. The methyl-directed DNA mismatch repair has been examined inVibrio cholerae, a highly pathogenic gram negative bacterium and the causative agent of the diarrhoeal disease cholera. The DNA adenine methyltransferase encoding gene (dam) of this organism which is involved in strand discrimination during the repair process has been cloned and the complete nucleotide sequence has been determined.Vibrio cholerae dam gene codes for a 21.5 kDa protein and can substitute for theEscherichia coli enzyme. Overproduction ofVibrio cholerae Dam protein is neither hypermutable nor lethal both in Escherichia coli andVibrio cholerae. WhileEscherichia coli dam mutants are sensitive to 2-aminopurine,Vibrio cholerae 2-aminopurine sensitive mutants have been isolated with intact GATC methylation activity. The mutator genesmutS andmutL involved in the recognition of mismatch have been cloned, nucleotide sequence determined and their products characterized. Mutants ofmutS andmutL ofVibrio cholerae have been isolated and show high rate of spontaneous mutation frequency. ThemutU gene ofVibrio cholerae, the product of which is a DNA helicase II, codes for a 70 kDa protein. The deduced amino acid sequence of themutU gene hs all the consensus helicase motifs. The DNA cytosine methyltransferase encoding gene (dam) ofVibrio cholerae has also been cloned. Thedcm gene codes for a 53 kDa protein. This gene product might be involved in very short patch (VSP) repair of DNA mismatches. The vsr gene which is directly involved in VSP repair process codes for a 23 kDa protein. Using these information, the status of DNA mismatch repair inVibrio cholerae will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandyopadhyay R, Sengupta A and Das J 1989 A mutation in thedam gene ofVibrio cholerae: 2-Aminopurine sensitivity with intact GATC methylase activity;Biochem. Biophys. Res. Commun. 165 561–567

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay R and Das J 1994 The DNA adenine methyltransferase-encoding(dam) gene ofVibrio cholerae;Gene 140 67–71

    Article  PubMed  CAS  Google Scholar 

  • Bera T K, Ghosh S K and Das J 1989 Cloning and characterization of mutL and mutS genes ofVibrio cholerae: Nucleotide sequence of mutL gene;Nucleic Acids Res. 17 6241–6251

    Article  PubMed  CAS  Google Scholar 

  • Bhagwat S A, Sohail A and Roberts R J 1986 Cloning and characterization ofdam locus ofEscherichia coli K-12;J. Bacterial. 166 751–755

    CAS  Google Scholar 

  • Brown T C and Jiricny J 1988 Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells;Cell 54 705–711

    Article  PubMed  CAS  Google Scholar 

  • Chase J W and Richardson A. C 1974 Exonuclease VII ofEscherichia coli;J. Biol. Chem. 249 4553–4561

    PubMed  CAS  Google Scholar 

  • Chou P Y and Fasman G D 1978 Prediction of the secondary structure of proteins from their amino acid sequences;Adv. Enzymol. 47 45–148

    PubMed  CAS  Google Scholar 

  • Claverys J P and Lacks S A 1986 Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria;Microbiol. Rev. 50 133–165

    PubMed  CAS  Google Scholar 

  • Cooper D L, Lahue R S and Modrich P 1993 Methyl-directed mismatch repair is bidirectional;J. Biol. Chem. 268 11823–11829

    PubMed  CAS  Google Scholar 

  • Cox E C 1970 Mutator gene action and the replication of bacteriophage lambda;J. Mol. Biol. 50 129–135

    Article  PubMed  CAS  Google Scholar 

  • Cox E C 1976 Bacterial mutator genes and the control of spontaneous mutation;Annu. Rev. Genet. 10 135–156

    Article  PubMed  CAS  Google Scholar 

  • Coulondre A. J, Miller J H, Farabaugh J P and Gilbert W 1978 Molecular basis of base substitution hot spots inEscherichia coli;Nature (London) 274 775–780

    Article  CAS  Google Scholar 

  • Dohet C, Wagner R and Radman M 1986 Methyl directed repair of frame shift mutations in heteroduplex DNA;Proc. Natl. Acad. Sci. USA 83 3395–3397

    Article  PubMed  CAS  Google Scholar 

  • Drake JN 1969 Comparative rates of spontaneous mutation;Nature (London) 221 1132

    Article  CAS  Google Scholar 

  • Finchman J R S and Holliday R 1970 An explanation of fine structure map expansion in terms of excision repair;Mol. Gen. Genet. 109 309–322

    Article  Google Scholar 

  • Fox M S and Allen M K 1964 On the mechanism of deoxyribonuclease integration in pneumococcal transformation;Proc. Natl. Acad. Sci. USA 52 412–419

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S K, Biswas S K, Paul K and Das J 1992 Nucleotide and deduced amino acid sequence of the recA gene ofVibrio cholerae;Nucleic Acids Res. 20 372

    Article  PubMed  CAS  Google Scholar 

  • Gamier J, Osgesthorpe D J and Robson B 1978 Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins;J. Mol. Biol. 120 97–120

    Article  Google Scholar 

  • Grilley M, Griffith J and Modrich P 1993 Bidirectional excision in methyl-directed mismatch repair;J. Biol. Chem. 268 11830–11837

    PubMed  CAS  Google Scholar 

  • Hennecke F, Kolmar H, Brundl K and Fritz H J 1991 Thevsr gene product ofE. coli K12 is a strand and sequence specific endonuclease;Nature (London) 353 776–778

    Article  CAS  Google Scholar 

  • Herman G E and Modrich P 1981Escherichia coli K-12 clones that overproduce Dam methylase are hypermutable;J. Bacteriol. 145 644–646

    PubMed  CAS  Google Scholar 

  • Holliday R A 1974 Molecular aspects of genetic exchange and gene conversion;Genetics 78 273–287

    PubMed  CAS  Google Scholar 

  • Jonczyk P, Hines R and Smith D W 1989Escherichia coli dam gene is expressed as a distal gene of a new operon;Mol. Gen. Genet. 217 85–96

    Article  PubMed  CAS  Google Scholar 

  • Jones M, Wagner R and Radman M 1987 Mismatch repair and recombination ofE. coli;Cell 50 621–626

    Article  PubMed  CAS  Google Scholar 

  • Kramer B, Kramer W and Fritz J H 1984 Different box/bases mismatches are conncted with different efficiencies by the methyl directed mismatch repair system ofE. coli;Cell 38 879–887

    Article  PubMed  CAS  Google Scholar 

  • Lahue R S, Au K G and Modrich P 1989 DNA mismatch correction in a defined system;Science 245 160–164

    Article  PubMed  CAS  Google Scholar 

  • Lieb M 1983 Specific mismatch correction in bacteriophage lambda crosses by very short patch repair;Mol. Gen. Genet. 191 118–128

    Article  PubMed  CAS  Google Scholar 

  • Lieb M 1985 Recombination in the lambda repressor gene: Evidence that very short patch (VSP) mismatch correction restores specific sequence;Mol. Gen. Genet. 199 465–476

    Article  PubMed  CAS  Google Scholar 

  • Lieb M 1987 Bacterial genes mutL, mutS anddcm participate in repair of mismatches at 5-methyl cytosine site;J. Bacteriol. 169 5241–5246

    PubMed  CAS  Google Scholar 

  • Loeb L A and Kunkel T A 1982 Fidelity of DNA synthesis;Annu. Rev. Biochem. 52 429–457

    Article  Google Scholar 

  • Lovett S T and Kolodner R D 1989 Identification and purification of a single-stranded DNA-specific exonuclease encoded by thered gene ofEscherichia coli;Proc. Natl. Acad. Sci. USA 86 2627–2631

    Article  PubMed  CAS  Google Scholar 

  • Lu A L Clark S and Modrich P 1983 Methyl directed repair of DNA base pair mismatchesin vitro;Proc. Natl. Acad. Sci. USA 80 4639–4643

    Article  PubMed  CAS  Google Scholar 

  • Marinus M G 1984DNA methylation (New York: Springer-Verlag)

    Google Scholar 

  • Meselson M S and Radding A. M 1975 A general model for genetic recombination;Proc. Natl. Acad. Sci. USA 72 358–361

    Article  PubMed  CAS  Google Scholar 

  • Modrich P 1987 DNA mismatch correction;Annu. Rev. Biochem. 56 435–466

    Article  PubMed  CAS  Google Scholar 

  • Modrich P 1989 Methyl directed DNA mismatch correction;J. Biol. Chem. 264 6597–6600

    PubMed  CAS  Google Scholar 

  • Novotany J and Aufray C 1984 A programme for prediction of protein secondary structures from nucleotide sequence data: application to histocompatability antigens;Nucleic Acids Res. 12 243–255

    Article  Google Scholar 

  • Paul K, Ghosh S K and Das J 1986 Cloning and expression inEscherichia coli of a recA like gene fromVibrio cholerae;Mol. Gen. Genet. 203 58–63

    Article  PubMed  CAS  Google Scholar 

  • Pukkila P J, Peterson J, Herman G, Modrich P and Meselson M 1983 Effects of high levels of DNA adenine methylation on methyl directed mismatch repair inEscherichia coli;Genetics 104 571–582

    PubMed  CAS  Google Scholar 

  • Radman M and Wagner R 1986 Mismatch repair inEscherichia coli;Annu. Rev. Genet. 20 523–538

    Article  PubMed  CAS  Google Scholar 

  • Schlagman S L and Hattman S 1983 Molecular cloning of a functional dam+ gene coding for phage T4 DNA adenine methylase;Gene 22 139–156

    Article  PubMed  CAS  Google Scholar 

  • Schlagman S L, Hattman S and Marinus M G 1986 Direct role of theEscherichia coli Dam DNA methyltransferase in methylation-directed mismatch repair;J. Bacteriol. 165 896–900

    PubMed  CAS  Google Scholar 

  • Sohail A, Lieb M, Dar M and Bhagwat S A 1990 A gene required for very short patch repair inEscherichia coli is adjacent to the DNA cytosine methylase gene;J. Bacteriol. 172 4214–4221

    PubMed  CAS  Google Scholar 

  • Wagner R and Meselson M 1976 Repair tracts in mismatched DNA heteroduplexes;Proc. Natl. Acad. Sci. USA 73 4135–4139

    Article  PubMed  CAS  Google Scholar 

  • Wildenberg J and Meselson M 1975 Mismatch repair in heteroduplex DNA;Proc. Natl. Acad. Sci. USA 72 2202–2206

    Article  PubMed  CAS  Google Scholar 

  • Zell R and Fritz J H 1987 DNA mismatch repair inEscherichia coli counteracting the hydrolytic deamination of 5-methyl cytosine residues;EMBO J. 6 1809–1815

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, R., Sengupta, A., Bera, T.K. et al. Methyl directed DNA mismatch repair inVibrio cholerae . J Biosci 19, 557–564 (1994). https://doi.org/10.1007/BF02703202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703202

Keywords

Navigation