Skip to main content
Log in

Aberrant Repair of 8-Oxoguanine in Short DNA Bulges

  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The presence of DNA damage can increase the likelihood of DNA replication errors and promote mutations. In particular, pauses of DNA polymerase at the site of damage can lead to polymerase slippage and the formation of 1–2-nucleotide bulges. Repair of such structures using an undamaged DNA template leads to small deletions. One of the most abundant oxidative DNA lesions, 8-oxoguanine (oxoG), was shown to induce small deletions, but the mechanism of this phenomenon is currently unknown. We studied the aberrant repair of oxoG located in one- and two-nucleotide bulges by the Escherichia coli and human base excision repair systems. Our results indicate that the repair in such substrates can serve as a mechanism for fixing small deletions in bacteria but not in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Joshua-Tor, L., Frolow, F., Appella, E., et al., J. Mol. Biol., 1992, vol. 225, no. 2, pp. 397–431.

    Article  CAS  PubMed  Google Scholar 

  2. Jiao, Y., Stringfellow, S., and Yu, H., J. Biomol. Struct. Dyn., 2002, vol. 19, no. 5, pp. 929–934.

    Article  CAS  PubMed  Google Scholar 

  3. Shi, X., Beauchamp, K.A., Harbury, P.B., and Herschlag, D., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 15, pp. E1473–E1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kunkel, T.A. and Bebenek, K., Annu. Rev. Biochem., 2000, vol. 69, pp. 497–529.

    Article  CAS  PubMed  Google Scholar 

  5. Talhaoui, I., Matkarimov, B.T., Tchenio, T., et al., Free Radical Biol. Med., 2017, vol. 107, pp. 266–277.

    Article  CAS  Google Scholar 

  6. Fleming, A.M. and Burrows, C.J., DNA Repair, 2017, vol. 56, pp. 75–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moriya, M., Ou, C., Bodepudi, V., et al., Mutat. Res., 1991, vol. 254, no. 3, pp. 281–288.

    Article  CAS  PubMed  Google Scholar 

  8. Markkanen, E., Castrec, B., Villani, G., and Hubscher, U., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 50, pp. 20401–20406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pande, P., Haraguchi, K., Jiang, Y.-L., et al., Biochemistry, 2015, vol. 54, no. 10, pp. 1859–1862.

    Article  CAS  PubMed  Google Scholar 

  10. Gilboa, R., Zharkov, D.O., Golan, G., et al., J. Biol. Chem., 2002, vol. 277, no. 22, pp. 19811–19816.

    Article  CAS  PubMed  Google Scholar 

  11. Kuznetsov, N.A., Koval, V.V., Zharkov, D.O., et al., Nucleic Acids Res., 2005, vol. 33, no. 12, pp. 3919–3931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sidorenko, V.S., Nevinsky, G.A., and Zharkov, D.O., DNA Repair, 2007, vol. 6, no. 3, pp. 317–328.

    Article  CAS  PubMed  Google Scholar 

  13. Endutkin, A.V., Yudkina, A.V., Zharkov, T.D., et al., Int. J. Mol. Sci, 2022, vol. 23, no. 21, p. 13353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tchou, J., Bodepudi, V., Shibutani, S., et al., J. Biol. Chem., 1994, vol. 269, no. 21, pp. 15318–15324.

    Article  CAS  PubMed  Google Scholar 

  15. Zharkov, D.O., Rosenquist, T.A., Gerchman, S.E., and Grollman, A.P., J. Biol. Chem., 2000, vol. 275, no. 37, pp. 28607–28617.

    Article  CAS  PubMed  Google Scholar 

  16. Bruner, S.D., Norman, D.P.G., and Verdine, G.L., Nature, 2000, vol. 403, no. 6772, pp. 859–866.

    Article  CAS  PubMed  Google Scholar 

  17. Fromme, J.C. and Verdine, G.L., J. Biol. Chem., 2003, vol. 278, no. 51, pp. 51543–51548.

    Article  CAS  PubMed  Google Scholar 

  18. Lavrukhin, O.V. and Lloyd, R.S., Biochemistry, 2000, vol. 39, no. 49, pp. 15266–15271.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

DNA sequencing was performed by employees of the Genomics Core Facility (Siberian Branch, Russian Academy of Sciences). Nfo protein was kindly provided by A.A. Ishchenko (Paris-Saclay University , France).

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 21-54-12025 NNIO_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Zharkov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Batrukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroshenko, D.A., Diatlova, E.A., Golyshev, V.M. et al. Aberrant Repair of 8-Oxoguanine in Short DNA Bulges. Dokl Biochem Biophys 513 (Suppl 1), S82–S86 (2023). https://doi.org/10.1134/S1607672923600355

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672923600355

Keywords:

Navigation