Skip to main content
Log in

LiMn2O4 films grown by pulsed-laser deposition

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiMn2O4 films have been deposited onto silicon wafer by pulsed-laser deposition (PLD) technique in order to test their reliability as cathode materials in rechargeable lithium microbatteries. The film formation has been studied as a function of the preparation conditions, i.e., composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Depending on the conditions of deposition, Mn2O3 was present as an impurity phase. When deposited onto silicon substrate maintained at 300 °C in an oxygen pressure of 100 mTorr from the target LiMn2O4+15 % Li2O, the PLD films are well-textured with crystallite size of 300 nm. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by x-ray diffraction and Raman scattering measurements. Surface morphologies of layers were investigated by SEM. The cells Li//LiMn2O4 have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the range 3.0–4.2 V. The voltage profiles show the two expected steps for LixMn2O4 with a specific capacity as high as 120 mC/cm2 µm. The chemical diffusion coefficients for the LixMn2O4 thin films appear to be in the range of 10−11-10−12 cm2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. J.C. Hunter, J. Solid State Chem.39, 142 (1981).

    Article  CAS  Google Scholar 

  2. M.M. Thackeray, W.I.F. David, P.G. Bruce and J.B. Goodenough, Mater. Res. Bull.18, 461 (1983).

    Article  CAS  Google Scholar 

  3. T. Ohzuku, M. Kitagawa, and T. Hirai, J. Electrochem. Soc.137, 769 (1990).

    CAS  Google Scholar 

  4. J.M. Tarascon and D. Guyomard, J. Electrochem. Soc.128, 2864 (1991).

    Google Scholar 

  5. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, Electrochim. Acta38, 1159 (1993).

    Article  CAS  Google Scholar 

  6. R.J. Gummow, A. deKock, and M.M. Thackeray, Solid State Ionics69, 59 (1994).

    Article  CAS  Google Scholar 

  7. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, and J.R. Dahn, J. Electrochem. Soc.144, 205 (1997).

    CAS  Google Scholar 

  8. F.K. Shokoohi, J.M. Tarascon, B.J. Wilkens, D. Guyomard, and C.C. Chang, J. Electrochem. Soc.139, 1845 (1992).

    CAS  Google Scholar 

  9. J.B. Bates, D. Lubben, and N.J. Dudney, IEEE Trans. Aerop. Electron. Syst., AES-10, 30 (1995).

  10. Chen Liquan and J. Schoonman, Solid State Ionics67, 17 (1994).

    Google Scholar 

  11. K.H. Hwang, S.H. Lee, and S.K. Joo, J. Electrochem. Soc.141, 3296 (1994).

    CAS  Google Scholar 

  12. T. Miura and T Kishi, Mat. Res. Soc. Symp. Proc.393, 69 (1995).

    CAS  Google Scholar 

  13. M. Antaya, J.R. Dahn, J.S. Preston, E. Rossen and J.N. Reimers, J. Electrochem. Soc.140, 575 (1993).

    CAS  Google Scholar 

  14. C. Chen, E.M. Kelder, P.J.J.M. van der Put, and J. Schoonman, J. Mater. Chem.6, 765 (1996).

    CAS  Google Scholar 

  15. D.S. Ginley, J.D. Perkins, J.M. McGraw, P.A. Parilla, M.L. Fu, and C.T. Rogers, Mat. Res. Soc. Symp. Proc.496, 293 (1998).

    CAS  Google Scholar 

  16. K.A. Striebel, C.Z. Deng, S.J. Wen, and E.J. Cairns, J. Electrochem. Soc.143, 1821 (1996).

    CAS  Google Scholar 

  17. A. Rougier, K.A. Striebel, S.J. Wen, and E.J. Cairns, J. Electrochem. Soc.145, 2975 (1998).

    CAS  Google Scholar 

  18. M. Morcrette, P. Barboux, J. Perriere, and T. Brousse, Solid State Ionics112, 249 (1998).

    Article  CAS  Google Scholar 

  19. C. Julien, C. Perez-Vicente, and G.A. Nazri, Ionics2, 1 (1996).

    Google Scholar 

  20. C. Julien, A. Rougier, and G.A. Nazri, Mat. Res. Soc. Symp. Proc.453, 647 (1997).

    CAS  Google Scholar 

  21. C. Julien, M. Massot, C. Perez-Vicente, E. Haro-Poniatowski, G.A. Nazri, and A. Rougier, Mat. Res. Soc. Symp. Proc.496, 415 (1998).

    CAS  Google Scholar 

  22. B. Ammundsen, G.R. Burns, M.S. Islam, H. Kanoh, and J. Rozière, J. Phys. Chem.103, 5175 (1999).

    CAS  Google Scholar 

  23. W.B. White and B.A. De Angelis, Spectrochim. Acta23A, 985 (1967).

    Google Scholar 

  24. D. Guyomard and J.M. Tarascon, J. Electrochem. Soc.139, 937 (1992).

    CAS  Google Scholar 

  25. G. Pistoia, D. Zane, and Y. Zhang, J. Electrochem. Soc.142, 2551 (1995).

    CAS  Google Scholar 

  26. M.M. Thackeray, J. Electrochem. Soc.142, 2558 (1995).

    CAS  Google Scholar 

  27. W. Weppner and R.A. Huggins, J. Electrochem. Soc.124, 1569 (1977).

    CAS  Google Scholar 

  28. K.H. Hwang and S.K. Joo, Power Sources15, 393 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho-Lopez, M.A., Escobar-Alarcon, L., Haro-Poniatowski, E. et al. LiMn2O4 films grown by pulsed-laser deposition. Ionics 5, 244–250 (1999). https://doi.org/10.1007/BF02375847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375847

Keywords

Navigation