Skip to main content
Log in

Electric and dielectric properties of wet human cancellous bone as a function of frequency

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study the electrical and dielectric properties of wet human cancellous bone from distal tibiae were examined as a function of frequency and direction. The resistance and capacitance of the cancellous bone specimens were measured at near 100% relative humidity. The measurements were made in all three orthogonal directions at discrete frequencies ranging from 120 Hz to 10 MHz using an LCR meter. At a frequency of 100 kHz, the mean resistivity and specific capacitance for the thirty cancellous bone specimens were 500 ohm-cm and 8.64 pF/cm in the longitudinal direction, 613 ohm-cm and 15.25 pF/cm in the anterior-posterior direction, and 609 ohm-cm and 14.64 pF/cm in the lateral-medial direction. All electrical and dielectric properties except the resistivity and the impedance were highly frequency dependent for the frequency range tested. All electrical and dielectric properties were transversely isotropic as the values for the longitudinal direction were different from values obtained for the two transverse directions and properties in the two transverse directions were approximately similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakkalakal, D.A.; Johnson, M.W.; Harper, R.A.; Katz, J.L. Dielectric properties of fluid-saturated bone. IEEE Trans. Biomed. Eng. 27:95–100; 1980.

    CAS  PubMed  Google Scholar 

  2. Chakkalakal, D.A.; Johnson, M.W. Electrical properties of compact bone. Clin. Orthop. Rel. Res. 161:133–145; 1981.

    Google Scholar 

  3. Chen, I.I.H.; Saha, S. Analysis of current distribution in bone produced by pulsed electro-magnetic field stimulation of bone. Biomat. Art. Cells Art. Org. 15:737–744; 1987–88.

    Google Scholar 

  4. Davies, R.J.; Renah, J.; Kaplan, D.; et al. Epithelial impedance analysis in experimentally induced colon cancer. Biophysical J. 52:783–790; 1987.

    CAS  Google Scholar 

  5. Gong, J.K.; Arnold, J.S.; Cohn, S.H. Composition of trabecular and cortical bone. Anatomical Record. 149:325–332; 1964.

    CAS  PubMed  Google Scholar 

  6. Hancox, N.M. Biology of Bone. London: Cambridge University; 1972.

    Google Scholar 

  7. Kosterich, J.D.; Foster, K.R.; Pollack, S.R. Dielectric permittivity and electrical conductivity of fluid saturated bone. IEEE Trans. Biomed. Eng. 30:81–86; 1983.

    CAS  PubMed  Google Scholar 

  8. Kosterich, J.D.; Foster, K.R.; Pollack, S.R. Dielectric properties of fluid-saturated bone—the effect of variation in conductivity of immersion fluid. IEEE Trans. Biomed. Eng. 31:369–373; 1984.

    CAS  PubMed  Google Scholar 

  9. Lakes, R.S.; Harper, R.A.; Katz, J.L. Dielectric relaxation in cortical bone. J. Appl. Physics 48: 808–811; 1977.

    Article  Google Scholar 

  10. Liboff, A.R.; Rinaldi, R.A.; Lavine, L.S.; Shamos, M.H. On electrical conduction in living bone. Clin. Orthop. 106:330–335; 1975.

    PubMed  Google Scholar 

  11. Martin, R.B. Comparison of capacitive and inductive bone stimulation devices. Ann. Biomed. Eng. 7:387–409; 1979.

    CAS  PubMed  Google Scholar 

  12. Pethig, R. Dielectric properties of body tissues. Clin. Phys. Physiol. Meas. 8:5–12; 1987.

    Article  PubMed  Google Scholar 

  13. Pethig, R. Dielectric and Electronic Properties of Biological Materials, New York: John Wiley and Sons; 1979.

    Google Scholar 

  14. Pethig, R.; Kell, D.B. The passive electrical properties of biological systems: their significance in physiology, biophysics, and biotechnology (review article). Phys. Med. Biol. 32:933–970; 1987.

    Article  CAS  PubMed  Google Scholar 

  15. Rai, D.V.; Saha, S.; Williams, P.A.; Saha, K. Electrical properties of ligaments. Digest of Paperts, 6th Southern Biomed. Eng. Conf.: pp. 150–151; 1987.

  16. Reddy, G.N.; Saha, S. Electrical and dielectric properties of wet bone as a function of frequency. IEEE Trans. Biomed. Eng. 31:296–302; 1984.

    CAS  PubMed  Google Scholar 

  17. Saha, S.; Reddy, G.N.; Albright, J.A. Factors affecting the measurement of bone impedance. Med. Biol. Eng. and Comp. 22:123–129; 1984.

    CAS  Google Scholar 

  18. Saha, S.; Williams, P.A. Electrical properties of cancellous bone. Fed. Proc. 45:172; 1986.

    Google Scholar 

  19. Saha, S.; Williams, P.A. Electrical properties of human cancellous bone from distal femur. Trans. 12th Ann. Meet. Soc. Biomat. 9:80; 1986.

    Google Scholar 

  20. Saha, S.; Williams, P.A. Electrical and dielectric properties of wet human cancellous bone as a function of frequency. In: Saha, S., ed. Biomedical Engineering V: Recent Developments, New York: Pergamon Press; 1986: pp. 217–220.

    Google Scholar 

  21. Saha, S.; Williams, P.A. Effect of various storage methods on the dielectric properties of compact bone. Med. and Biol. Eng. and Comput. 26:199–202; 1988.

    CAS  Google Scholar 

  22. Schwan, H.P. Dielectric Properties of Cells and Tissues. In: Chiabrera, A.; Nicolini, C.; Schwan, H.P., eds. Interactions Between Electromagnetic Fields and Cells, New York: Plenum Press; 1985.

    Google Scholar 

  23. Singh, S.; Behari, J. Frequency dependence of electrical properties of human bone. J. Bioelectricity 3:347–356; 1984.

    Google Scholar 

  24. Singh, S.; Saha, S. Electrical properties of bone: a review. Clin. Orthop. Rel. Res. 186:249–271; 1984.

    Google Scholar 

  25. Smith, S.R.; Foster, K.R. Dielectric properties of low-water-content tissues. Phys. Med. Biol. 30: 965–973; 1985.

    Article  CAS  PubMed  Google Scholar 

  26. Stoy, R.D.; Foster, K.R.; Schwan, H.P. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data. Phys. Med. Biol. 27:501–513; 1985.

    Google Scholar 

  27. Swanson, G.T.; Lafferty, J.F. Electrical properties of bone as a function of age, immobilization, and vibration. J. Biomech. 5:261–266; 1972.

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto, Y.; Yamamoto, T.; Ohta, S.; et al. The measurement principle for evaluating the performance of drugs and cosmetics by skin impedance. Med. and Biol. Eng. and Comp. 16:623–632; 1978.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Williams, P.A. Electric and dielectric properties of wet human cancellous bone as a function of frequency. Ann Biomed Eng 17, 143–158 (1989). https://doi.org/10.1007/BF02368024

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368024

Keywords

Navigation