Skip to main content

Mechanical Properties of Bone Ex Vivo

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

  • 3262 Accesses

Abstract

The primary functions of bone are to provide support and protection—mechanical functions. The aim of this chapter is to set out some of the methods that can be used to measure these properties in cortical and cancelleous bone from large (e.g., human or bovine) and small (e.g., mouse) animals. The difference between the properties of the sample (extrinsic properties) and the properties of the material (intrinsic properties) is introduced and techniques for measuring them suggested. The addition of other tests to give a complete characterization of a bone sample is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aspden RM (1990) Constraining the lateral dimensions of uniaxially loaded materials increases the calculated strength and stiffness: application to muscle and bone. J Mater Sci Mater Med 1:100–104

    Article  Google Scholar 

  2. Bryce R, Aspden RM, Wytch R (1995) Stiffening effects of cortical bone on vertebral cancellous bone in situ. Spine (Phila Pa 1976) 20:999–1003

    Article  CAS  Google Scholar 

  3. Linde F, Hvid I (1989) The effect of constraint on the mechanical behaviour of trabecular bone specimens. J Biomech 22:485–490

    Article  CAS  Google Scholar 

  4. Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18(5):317–328

    Article  CAS  Google Scholar 

  5. Gibson LJ, Ashby MF (1988) Cellular solids. Pergamon Press, Oxford

    Google Scholar 

  6. Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):010802–010815

    Article  Google Scholar 

  7. Cowin SC (2001) In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton

    Google Scholar 

  8. Turner CH, Burr DB (2001) Experimental techniques for bone mechanics. In: Cowin SC (ed) Bone mechanics handbook, vol 2. CRC Press, Boca Raton, pp 7–1-7-35

    Google Scholar 

  9. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14(4):595–608

    Article  CAS  Google Scholar 

  10. Spatz HC, Oleary EJ, Vincent JFV (1996) Young's moduli and shear moduli in cortical bone. Proc Royal Soc B263:287–294

    Google Scholar 

  11. Li B, Aspden RM (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12:641–651

    Article  CAS  Google Scholar 

  12. Lees S, Heeley JD, Cleary PF (1979) A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif Tissue Int 29:107–117

    Article  CAS  Google Scholar 

  13. Mkukuma LD, Imrie CT, Skakle JMS, Hukins DWL, Aspden RM (2005) Thermal stability and structure of cancellous bone mineral from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 64(2):222–225

    Article  CAS  Google Scholar 

  14. Stefan U, Michael B, Werner S (2010) Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone 47(6):1048–1053

    Article  CAS  Google Scholar 

  15. Öhman C, Dall’Ara E, Baleani M, Jan SVS, Viceconti M (2008) The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone. Clin Biomech 23(10):1294–1298

    Article  Google Scholar 

  16. Nazarian A, Hermannsson BJ, Muller J, Zurakowski D, Snyder BD (2009) Effects of tissue preservation on murine bone mechanical properties. J Biomech 42(1):82–86

    Article  Google Scholar 

  17. van Haaren EH, van der Zwaard BC, van dV, Heyligers IC, Wuisman PI, Smit TH (2008) Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop 79(5):708–716

    Article  Google Scholar 

  18. Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC (1994) Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J Biomech 27(9):1127–1136

    Article  CAS  Google Scholar 

  19. Aspden RM (1990) The effect of boundary conditions on the results of mechanical tests. J Biomech 23:623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Aspden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goodyear, S.R., Aspden, R.M. (2019). Mechanical Properties of Bone Ex Vivo. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics