Skip to main content
Log in

Two-way communication for programming and measurement in a miniature implantable stimulator

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Implantable stimulators are needed for chronic electrical stimulation of nerves and muscles in experimental studies. The device described exploits the versatility of current microcontrollers for stimulation and communication in a miniature implant. Their standard outputs can provide the required selectable constantcurrent sources. In this device, pre-programmed stimulation paradigms were selected by transcutaneous light pulses. The potential of a programmable integrated circuit (PIC) was thus exploited. Implantable devices must be biocompatible. A novel encapsulation method that require no specialised equipment and that used two classical encapsulants, silicone and Teflon was developed. It was tested for implantation periods of up to four weeks. A novel way to estimate electrode impedance in awake animals is also presented. It was thus possible to follow the evolution of the nerve-electrode interface and, if necessary, to adjust the stimulation parameters. In practice, the electrode voltage at the end of a known constant-current pulse was measured by the PIC. The binary coded value was then indicated to the user as a series of muscle twitches that represented the binary value of the impedance measurement. This neurostimulator has been successfully tested in vitro and in vivo. Thresholds and impedance values were chronically monitored following implantation of a self-sizing spiral cuff electrode. Impedance variations in the first weeks could reflect morphological changes usually observed after the implantation of such electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. M. (1988): ‘Inflammatory response to implants’,Trans. Amer. Soc. Artif. Organs,34, pp. 101–107

    Google Scholar 

  • Branner, A., Stein, R. B., Fernandez, E., Aoyagi, Y., andNormann, R. A. (2004): ‘Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve’,IEEE Trans. Biomed. Eng.,51, pp. 146–157

    Article  Google Scholar 

  • Brown, J., andSalmons, S. (1981): ‘Percutaneous switching of an implantable muscle stimulator via an optical link’,J. Biomed. Eng.,3, pp. 206–208

    Google Scholar 

  • Chouard, C. H., andPialoux, P. (1995): ‘Biocompatibility of cochlear implants’,Bull. Acad. Natl. Med.,179, pp. 549–555

    Google Scholar 

  • Dalmose, A. L., Rijkhoff, N. J., andAndersen, I. S., Stefania, D., Jorgensen, T. M., andDjurhuus, J. C. (2002): ‘Bladder and urethral responses to pelvic nerve stimulation in the pig’,Scand. J. Urol. Nephrol. Suppl.,210, pp. 34–45

    Google Scholar 

  • Dedeuwaerdere, S., Vonck, K., Claeys, P., Van Hese, P., D'Have, M., Grisar, T., Naritoku, D., andBoon, P. (2004): ‘Acute vagus nerve stimulation does not suppress spike and wave discharges in genetic absence epilepsy rats from Strasbourg’,Epilepsy Res.,59, pp. 191–198

    Google Scholar 

  • Delbeke, J., Wanet-Defalque, M. C., Gerard, B., Troosters, M., Michaux, G., andVeraart, C. (2002): ‘The microsystems based visual prosthesis for optic nerve stimulation’,Artif. Organs,26, pp. 232–234

    Article  Google Scholar 

  • Dennis, R. G., Dow, D. E., andFaulkner, J. A. (2003): ‘An implantable device for stimulation of denervated muscles in rats’,Med. Eng. Phys.,25, pp. 239–253

    Article  Google Scholar 

  • Dinguizli, M., Jeumont, S., Beghein, N., He, H., Walczak, T., Lesniewski, P. N., Hou, H., Grinberg, O. Y., Sucheta, A., Swartz, H. M., Rouxhet, P. G., andGallez, B. (2004): ‘Development and evaluation of biocompatible films in polytetrafluoroethylene polymers holding lithium phthalocyanine crystals for their use in EPR oximetry’submitted.

  • Donaldson, N. N., andDonaldson, P. E. (2000): ‘Speeding-up the cure of one-part silicone rubber, when encapsulating neurological prostheses: the permeable mould’,Med. Eng. Phys.,22, pp. 301–306

    Article  Google Scholar 

  • Donaldson, P. E. (1989): ‘Encapsulating microelectronic implants in one-part silicone rubbers’,Med. Biol. Eng. Comput.,27, pp. 93–94

    Google Scholar 

  • Donfack, C., Sawan, M., andSavaria, Y. (2000): ‘Implantable measurement technique dedicated to the monitoring of electrodenerve contact in bladder stimulators’,Med. Biol. Eng. Comput.,38, pp. 465–468

    Article  Google Scholar 

  • Eken, T., andGundersen, K. (1988): ‘Electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles’,J. Physiol.,402, 651–669

    Google Scholar 

  • Grill, W. M., andMortimer, J. T. (1994): ‘Electrical properties of implant encapsulation tissue’,Ann. Biomed. Eng.,22, pp. 23–33

    Google Scholar 

  • Grill, W. M., andMortimer, J. T. (1998): ‘Stability of the inputoutput properties of chronically implanted multiple contact nerve cuff stimulating electrodes’,IEEE Trans. Rehabil. Eng.,6, pp. 364–373

    Google Scholar 

  • Grill, W. M., andMortimer, J. T. (2000): ‘Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes’,J. Biomed. Mater. Res.,50, pp. 215–226

    Article  Google Scholar 

  • Inmann, A., andHaugland, M. (2004): ‘Implementation of natural sensory feedback in a portable control system for a hand grasp neuroprosthesis’,Med. Eng. Phys.,26, pp. 449–458

    Google Scholar 

  • Jarvis, J. C., andSalmons, S. (1991): ‘A family of neuromuscular stimulators with optical transcutaneous control’,J. Med. Eng. Technol.,15, pp. 53–57

    Google Scholar 

  • Jarvis, J. C., andSalmons, S. (2001): ‘The application and technology of implantable neuromuscular stimulators: an introduction and overview’,Med. Eng. Phys.,23, pp. 3–7

    Article  Google Scholar 

  • Jezernik, S., Wen, J. G., Rukhoff, N. J., Djurhuus, J. C., andSinkjaer, T. (2000): ‘Analysis of bladder related nerve cuff electrode recordings from preganglionic pelvic nerve and sacral roots in pigs’,J. Urol.,163, pp. 1309–1314

    Article  Google Scholar 

  • Larsen, J. O., Thomsen, M., Haugland, M., andSinkjaer, T. (1998): ‘Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons’,Acta Neuropathol. (Berl.),96, pp. 365–378

    Article  Google Scholar 

  • Lewis, D. M., Al-Amood, W. S., andSchmalbruch, H. (1997): ‘Effects of long-term phasic electrical stimulation on denervated soleus muscle: guinea-pig contrasted with rat’,J. Muscle Res. Cell Motil.,18, pp. 573–586

    Article  Google Scholar 

  • Loeb, G. E., andPeck, R. A. (1996): ‘Cuff electrodes for chronic stimulation and recording of peripheral nerve activity’,J. Neurosci. Methods,64, pp. 95–103

    Article  Google Scholar 

  • Lopez-Guajardo, A., Sutherland, H., Jarvis, J. C., andSalmons, S. (2001): ‘Induction of a fatigue-resistant phenotype in rabbit fast muscle by small daily amounts of stimulation’,J. Appl. Physiol.,90, pp. 1909–1918

    Google Scholar 

  • Naples, G. G., Mortimer, J. T., Scheiner, A., andSweeney, J. D. (1988): ‘A spiral nerve cuff electrode for peripheral nerve stimulation’,IEEE Trans. Biomed. Eng.,35, pp. 905–916

    Article  Google Scholar 

  • Nilsson, N. J. (1960): ‘Oximetry’,Physiol. Rev.,40, pp. 1–26

    Google Scholar 

  • Rieger, R., Taylor, J., Comi, E., Donaldson, N., Russold, M., Mahony, C. M., McLaughlin, J. A., McAdams, E., Demosthenous, A., andJarvis, J. C. (2004): ‘Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs’,Med. Eng. Phys.,26, pp. 531–534

    Article  Google Scholar 

  • Romero, E., Denef, J. F., Delbeke, J., Robert, A., andVeraart, C. (2001): ‘Neural morphological effects of long-term implantation of the self-sizing spiral cuff nerve electrode’,Med. Biol. Eng. Comput.,39, pp. 90–100

    Article  Google Scholar 

  • Salmons, S., andJarvis, J. C. (1991): ‘Simple optical switch for implantable devices’,Med. Biol. Eng. Comput.,29, pp. 554–556

    Google Scholar 

  • Salmons, S., Gunning, G. T., Taylor, I., Grainger, S. R., Hitching, D. J., Blackhurst, J., andJarvis, J. C. (2001): ‘ASIC or PIC? Implantable stimulators based on semi-custom CMOS technology or low-power microcontroller architecture’,Med. Eng. Phys.,23, pp. 37–43

    Google Scholar 

  • Thil, M.-A., Vince, V., Delbeke, J., andColin, I. M. (2004): ‘Differential expression of the three nitric oxide synthase isoforms in the rat sciatic nerve after implantation of a spiral cuff electrode’,Pflugers Arch. Eur. J. Physiol.,447, p. R20

    Google Scholar 

  • Tyler, D. J., andDurand, D. M. (1994): ‘Interfascicular electrical stimulation for selectively activating axons’,IEEE Eng. Med. Biol. Mag.,13, pp. 575–583

    Google Scholar 

  • Veraart, C., Grill, W. M., andMortimer, J. T. (1993): ‘Selective control of muscle activation with a multipolar nerve cuff electrode’,IEEE Trans. Biomed. Eng.,40, pp. 640–653

    Article  Google Scholar 

  • Veraart, C., Wanet-Defalque, M. C., Gerard, B., Vanlierde, A., andDelbeke, J. (2003): ‘Pattern recognition with the optic nerve visual prosthesis’,Artif. Organs,27, pp. 996–1004

    Article  Google Scholar 

  • Vince, V., Thil, M. A., Veraart, C., Colin, I. M., andDelbeke, J. (2004): ‘Biocompatibility of platinum-metallized silicone rubber:in vivo andin vitro evaluation’,J. Biomater. Sci. Polym. Ed.,15, pp. 173–188

    Article  Google Scholar 

  • Vince, V., Thil, M.-A., Gerard, A.-C., Veraart, C., Delbeke, J., andColin, I. M. (2005): ‘Cuff electrode implantation around the rat sciatic nerve is associated with a regulation of TNF- and TGF-1’,J. Neuroimmunol.,159, pp. 75–86

    Article  Google Scholar 

  • Walter, J. S., McLane, J., Cai, W., Khan, T., andCogan, S. (1995): ‘Evaluation of a thin-film peripheral nerve cuff electrode’,J. Spinal. Cord. Med.,18, pp. 28–32

    Google Scholar 

  • Werner, L., Legeais, J. M., Nagel, M. D., andRenard, G. (1999): ‘Neutral red assay of the cytotoxicity of fluorocarbon-coated polymethylmethacrylate intraocular lenses in vitro’,J. Biomed. Mater. Res.,48, pp. 814–819

    Article  Google Scholar 

  • Winter, K. F., Hartmann, R., andKlinke, R. (1998): ‘A stimulator with wireless power and signal transmission for implantation in animal experiments and other applications’,J. Neurosci. Methods.,79, pp. 79–85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thil, M.A., Gérard, B., Jarvis, J.C. et al. Two-way communication for programming and measurement in a miniature implantable stimulator. Med. Biol. Eng. Comput. 43, 528–534 (2005). https://doi.org/10.1007/BF02344736

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344736

Keywords

Navigation