Skip to main content
Log in

Cloning and sequence analysis of the invertase geneINV1 from the yeastPichia anomala

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A genomic library from the yeastPichia anomala has been constructed and employed to clone the gene encoding the sucrose-hydrolysing enzyme invertase by complementation of a sucrose non-fermenting mutant ofSaccharomyces cerevisiae. The cloned gene,INV1, was sequenced and found to encode a polypeptide of 550 amino acids which contained a 22 amino-acid signal sequence and ten potential glycosylation sites. The amino-acid sequence shows significant identity with other yeast invertases and also withKluyveromyces marxianus inulinase, a yeast β-fructofuranosidase which has a different substrate specificity. The nucleotide sequences of the 5′ and 3′ non-coding regions were found to contain several consensus motifs probably involved in the initiation and termination of gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett JA, Payne RW, Yarrow D (1990) Yeasts: characteristics and identification, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109

    PubMed  Google Scholar 

  • Bennetzen JL, Hall BD (1982) Yeast alcohol dehydrogenase isozyme I gene structure. J Biol Chem 257:3018–3025

    PubMed  Google Scholar 

  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24

    PubMed  Google Scholar 

  • Buckholz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/Technolo 9:1067–1072

    Google Scholar 

  • Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154

    PubMed  Google Scholar 

  • Chomczynski P (1992) One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem 201:134–139

    PubMed  Google Scholar 

  • Cohen RE, Ballou CE (1981) Mannoproteins structure. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, Vol 1313: plant carbohydrates. Springer Verlag, Berlin, pp 441–458

    Google Scholar 

  • Collart MA, Oliviero S (1993) Preparation of yeast RNA by extraction with hot acidic phenol. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Greene Publishing Associates, and Wiley-Interscience, New York, pp 13.12.1–13.12.5

    Google Scholar 

  • Esmon PC, Esmon BE, Schauer IE, Taylor A, Schekman R (1987) Structure, assembly and secretion of octameric invertase. J Biol Chem 262:4387–4394

    PubMed  Google Scholar 

  • Goldstein A, Lampen JO (1975) β-D-fructofuranoside fructohydrolase from yeast. Methods Enzymol 42:505–511

    Google Scholar 

  • Gunasekaran P, Karunakaran T, Cami B, Mukundan AG, Preziosi L, Baratti J (1990) Cloning and sequencing of thesacA gene: characterization of a sucrase fromZymomonas mobilis. J Bacteriol 172:6727–6735

    PubMed  Google Scholar 

  • Hahn S, Hoar ET, Guarente L (1985) Each of three “TATA elements” specifies a subset of the transcription initiation sites at theCYC1 promoter ofSaccharomyces cerevisiae. Proc Natl Acad Sci USA 82:8562–8566

    PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol 166:557–580

    PubMed  Google Scholar 

  • Higgins DJ, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    PubMed  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation ofEscherichia coli. Gene 57:267–272

    PubMed  Google Scholar 

  • Hohmann S, Gozalbo D (1988) Structural analysis of the 5′ regions of the yeastSUC genes revealed analogous palindromes inSUC, MAL andGAL. Mol Gen Genet 211:446–454

    PubMed  Google Scholar 

  • Jonhston JR (1988) Yeast genetics, molecular aspects. In: Campbell I, Duffus JH (eds) Yeast. A practical approach. IRL Press, Oxford, pp 107–123

    Google Scholar 

  • Klein RD, Poorman RA, Favreau MA, Shea MIL. Hatzenbuhler NT, Nulf SC (1989) Cloning and sequence analysis of the gene encoding invertase from the yeastSchwanniomyces occidentalis. Curr Genet 16:145–152

    PubMed  Google Scholar 

  • Kozak M (1982) Possible role of flanking nucleotides in recognition of the AUG codon of eukaryotic ribosomes. Nucleic Acids Res 9:5233–5252

    Google Scholar 

  • Kukuruzinska MA, Gergh MLE, Jackson BJ (1987) Protein glycosylation in yeast. Annu Rev Biochem 56:915–944

    PubMed  Google Scholar 

  • Laloux O, Cassart J-P, Delcour J, Van Beeumen J, Vandenhaute J (1991) Cloning and sequencing of the inulinase gene ofKluyveromyces marxianus var.marxianus ATCC 12424. FEBS Lett 289:64–68

    PubMed  Google Scholar 

  • Martin IM, Débarbouillé E, Ferrari E, Klier A. Rapoport G (1987) Characterization of the levanase gene ofBacillus subtilis which shows homology to yeast invertase. Mol Gen Genet 208:177–184

    PubMed  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    PubMed  Google Scholar 

  • Moreno S, Sánchez Y, Rodriguez L (1990) Purification and characterization of the invertase fromSchizosaccharomyces pombe. Biochem J 267:697–702

    PubMed  Google Scholar 

  • Novick P, Ferro S, Schekman R (1981) Order of events in the yeast secretory pathway. Cell 25:461–469

    PubMed  Google Scholar 

  • Proudfoot NJ, Brownlee GG (1976) 3′ non-coding region sequences in eukaryotic messenger RNA. Nature 263:211–214

    PubMed  Google Scholar 

  • Reddy VA, Maley F (1990) Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. J Biol Chem 265:10817–10820

    PubMed  Google Scholar 

  • Rodriguez J, Pérez JA, Ruiz T, Rodriguez L (1995) Characterization of the invertase fromPichia anomala. Biochem J 306:235–239

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sarokin L, Carlson M (1984) Upstream region required for regulated expression of the glucose-repressibleSUC2 gene ofSaccharomyces cerevisiae. Mol Cell Biol 4:2750–2757

    PubMed  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High-efficiency transformation of intact yeast cells using single-stranded nucleic acids as a carrier. Curr Genet 16:339–346

    PubMed  Google Scholar 

  • Steinmetz M, Le Coq D, Aymerich S, Gonzy-Tréboul G, Gay P (1985) The DNA sequence of the gene for the secretedBacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet 200:220–228

    PubMed  Google Scholar 

  • Strathern JN, Higgins DR (1991) Recovery of plasmids from yeast intoEscherichia coli: shuttle vectors. Methods Enzymol 194:319–329

    PubMed  Google Scholar 

  • Taussig R, Carlson M (1983) Nucleotide sequence of the yeastSUC2 gene for invertase. Nucleic Acids Res 11:1943–1954

    PubMed  Google Scholar 

  • Tschopp JF, Sverlow G, Kosson R, Craig W, Grinna L (1987) Highlevel secretion of glycosylated invertase in the methylotrophic yeastPichia pastoris. Bio/Technology 5:1305–1308

    Google Scholar 

  • Von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    PubMed  Google Scholar 

  • Zaret KS, Sherman F (1982) DNA sequence required for efficient transcription termination in yeast. Cell 28:563–573

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, J.A., Rodriguez, J., Rodriguez, L. et al. Cloning and sequence analysis of the invertase geneINV1 from the yeastPichia anomala . Curr Genet 29, 234–240 (1996). https://doi.org/10.1007/BF02221553

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02221553

Key words

Navigation