Skip to main content
Log in

Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogenPhytophthora megasperma f. spmedicaginis, but does not reduce disease severity of chitin-containing fungi

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

cDNA sequences coding for an acidic glucanase (Aglul) that is expressed in elicited alfalfa cell suspension cultures, and a rice basic chitinase (RCH10) that is induced by elicitor and wounding, were placed into constitutive expression cassettes under control of the cauliflower mosaic virus 35S promoter or 35S enhancer sequences, and introduced in alfalfa plants of the regenerable cultivar Regen SY byAgrobacterium-mediated transformation. Southern and northern blot analysis confirmed stable incorporation and transcription, respectively, of the chimaeric genes in the transgenic plants. Active rice chitinase was expressed in alfalfa leaves, and leaves of plants transformed with theAglul sequence exhibited increased glucanase activity and the appearance of an additional glucanase band on activity gels. A glucanase of similar native electrophoretic mobility was constitutively present in root extracts of non-transformed alfalfa plants, and was induced in pathogen-infected leaves, presumably reflecting the expression pattern of the endogenousAglul gene. Thus, expression of the chimaericAglul transgene increased the amount, and broadened the tissue-type constitutive expression, of theAglul protein compared to control plants. Transgenic alfalfa plants containing a binary vector with both chimaeric genes in tandem expressed each gene to a much lesser extent than transgenic plants containing a single chimaeric gene. Expression of RCH10 in transgenic alfalfa did not appear to affect negatively theRhizobium/alfalfa interaction. Analysis of primary transformants for response to several fungal pathogens of alfalfa indicated statistically significant symptom reduction only in the case ofPhytophthora megasperma f. sp.medicaginis (Pmm), and only in plants overexpressingAglul. Resistance against Pmm segregated with glucanase expression in a cross between transgenic Regen SY and the commercial alfalfa cultivar Apollo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E. and Ryals, J. (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a.Proc. Natl Acad. Sci. USA 90, 7327–31.

    PubMed  Google Scholar 

  • Beffa, R.S., Neuhaus, J.M. and Meins, F., Jr (1993) Physiological compensation in antisense transformants: specific induction of an “ersatz” glucan endo-1,3-β-glucosidase in plants infected with necrotizing viruses.Proc. Natl Acad. Sci. USA 90, 8792–96.

    PubMed  Google Scholar 

  • Benhamou, N., Broglie, K., Chet, I. and Broglie, R. (1993) Cytology of infection of 35S-bean chitinase transgenic canola plants byRhizoctonia solani: cytochemical aspects of chitin breakdownin vivo.Plant J. 4, 295–305.

    Google Scholar 

  • Boller, T. (1992) Biochemical analysis of chitinases and β-1,3-glucanases. In Gurr, S.J., McPherson, M.J. and Bowles, D.J., eds.,Molecular Plant Pathology: a Practical Approach Vol. 2, pp. 23–30. Oxford, UK: Oxford, University Press.

    Google Scholar 

  • Boller, T. (1993) Antimicrobial functions of the plant hydrolases, chitinase and β-1,3-glucanase. In Fritig, B. and Legrand M., eds.,Mechanisms of Plant Defense Responses pp. 391–400. Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Broglie, R. and Broglie, K. (1993) Chitinases and plant protection. In Fritig, B. and Legrand, M., eds.Mechanisms of Plant Defense Responses pp 411–421. Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J. and Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogenRhizoctonia solani.Science 254, 1194–7.

    Google Scholar 

  • Cheong, J.J., Birberg, W., Fügedi, P., Pilotti, A., Garegg, P.J., Hong, N., Ogawa, T. and Hahn, M.G. (1991) Structure-activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean.Plant Cell 3, 127–36.

    PubMed  Google Scholar 

  • De Carvalho, F., Gheysen, G., Kushnir, S., Van Montagu, M., Inzé, D. and Castresana, C. (1992) Suppression of β-1,3-glucanase transgene expression in homozygous plants.EMBO J. 11, 2595–602.

    PubMed  Google Scholar 

  • De Jong, A.J., Cordewener, J., Schiavo, F.L., Terzi, M., Vandekerchkhove, J., Van Kammen, A. and De Vries, S.C. (1992) A carrot somatic embryo mutant is rescued by chitinasePlant Cell 4, 425–33.

    PubMed  Google Scholar 

  • Dixon, R.A. and Lamb, C.J. (1990) Molecular communication in interactions between plants and microbial pathogens.Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 339–67.

    Google Scholar 

  • Elkind, Y., Edwards, R., Mavandad, M., Hedrick, S.A., Ribak, O., Dixon, R.A., and Lamb, C.J. (1990) Abnormal plant development and down regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalnine ammonia-lyase gene.Proc. Natl Acad. Sci. USA 87, 9057–61.

    PubMed  Google Scholar 

  • Hames, B.D. (1981) An introduction to polyacrylamide gel electrophoresis. In Hames, B.D. and Rickwood, D., eds.,Gel Electrophoresis of Proteins: a Practical Approach, pp. 1–19. Oxford UK: IRL Press.

    Google Scholar 

  • Hennig, J., Dewey, R.E., Cutt, J.R. and Klessig, D.F. (1993) Pathogen, salicyclic acid and developmental dependent expression of a β-1,3-glucanase/GUS gene fusion in transgenic tobacco plants.Plant J. 4, 481–93.

    PubMed  Google Scholar 

  • Howie, W., Joe, L., Newbigin, E., Suslow, T. and Dunsmuir, P. (1994) Trangenic tobacco plants which express theChiA gene fromSerratia marcescens have enhanced tolerance toRhizoctonia solani.Transgenic Res. 3, 90–8.

    Google Scholar 

  • Keen, N.T. and Yoshikawa, M. (1983) β-1,3-endoglucanase from soybean releases elicitor-active carbohydrates from fungus cell walls.Plant Physiol. 71, 460–5.

    Google Scholar 

  • Lamb, C.J., Lawton, M.A., Dron, M. and Dixon, R.A. (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack.Cell 56, 215–24.

    PubMed  Google Scholar 

  • Lamb, C.J., Ryals, J.A., Ward, E.R. and Dixon, R.A. (1992) Emerging strategies for enhancing crop resistance to microbial pathogens.Bio/Technology 10, 1436–45.

    PubMed  Google Scholar 

  • Maher, E.A., Lamb, C.J. and Dixon, R.A. (1994) Stress responses in alfalfa (Medicago sativa L) XVII. Identification of multiple hydrolases and molecular characterization of an acidic glucanase.Physiol. Mol. Plant Pathol. 43, 329–42.

    Google Scholar 

  • Mauch, F., Mauch-Mani, B. and Boller, T. (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase.Plant Physiol. 88, 936–42.

    Google Scholar 

  • Meins, F., Jr., Neuhaus, J.M., Sperisen, C. and Ryals, J. (1992) The primary structure of plant pathogenesis-related glucanohydrolases and their genes. In Boller, T. and Meins, F., eds,Plant Gene Research. Genes Involved in Plant Defense, pp. 246–82. Vienna: Springer-Verlag.

    Google Scholar 

  • Neuhaus, J.M., Ahl-Goy, P., Hinz, U., Flores, S. and Meins, F., Jr. (1991) High-level expression of a tobacco chitinase gene inNicotiana sylvestris. Susceptibility of transgenic plants toCercospora nicotianae infection.Plant Mol. Biol. 16, 141–151.

    PubMed  Google Scholar 

  • Neuhaus, J.M., Flores, S., Keefe, D., Ahl-Goy, P. and Meins, F., Jr. (1992) The function of a vacuolar β-1,3-glucanase investigated by antisense transformation. Susceptibility of transgenicNicotiana sylvestris plants toCercospora nicotianae infection.Plant Mol. Biol. 19, 803–13.

    PubMed  Google Scholar 

  • Pan, S.Q., Ye, X.S. and Kuc', J. (1989) Direct detection of β-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels.Anal. Biochem. 182, 136–40.

    PubMed  Google Scholar 

  • Raikhel, N.V., Lee, H.I. and Broekaert, W.F. (1993) Structure and function of chitin-binding proteins.Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 591–615.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989)Molecular Cloning: a Laboratory Manual, 2nd edn., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schlumbaum, A., Mauch, F., Vogeli, U. and Boller, T. (1986) Plant chitinases are potent inhibitors of fungal growth.Nature 324, 365–7.

    Google Scholar 

  • Sela-Buurlage, M.B., Ponstein, A.S., Bres-Vloemans, S.A., Melchers, L.S., Van den Elzen, P.J.M. and Cornelissen, B.J.C. (1993) Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity.Plant Physiol. 101, 857–63.

    PubMed  Google Scholar 

  • Staehelin, C., Granado, J., Muller, J., Weimken, A., Mellor, R.B., Felix, G., Regenass, M., Broughton, W.J. and Boller, T. (1994) Perception ofRhizobium nodulation factors by tomato cells and inactivation by root chitinasesProc. Natl Acad. Sci. USA 91, 2196–200.

    PubMed  Google Scholar 

  • Thomas, M.R., Johnson, L.B. and White, F.F. (1990) Selection of interspecific hybrids ofMedicago by usingAgrobacterium-transformed tissues.Plant Sci. 69, 189–98.

    Google Scholar 

  • Trudel, J. and Asselin, A. (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis.Anal. Biochem. 178, 362–6.

    PubMed  Google Scholar 

  • Van den Elzen, P.J.M., Jongedijk, E., Melchers, L.S. and Cornelissen, B.J.C. (1993) Virus and fungal resistance: from laboratory to field.Phil. Trans R Soc. London B. 342, 271–8.

    Google Scholar 

  • Vierheilig, H., Alt, M., Neuhaus, J.M., Boller T. and Wiemken, A. (1993) Colonization of transgenicNicotiana sylvestris plants, expressing different forms ofNicotiana tabacum chitinase, by the root pathogenRhizoctonia solani and by the mycorrhizal symbiontGlomus mosseae.Mol. Plant-Microbe Interact. 6, 261–4.

    Google Scholar 

  • Vögeli-Lange, R., Fründt, C., Hart, C.M., Nagy, F. and Meins F., Jr (1994) Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I β-1,3-glucanase B promoter.Plant Mol. Biol. 25, 299–311.

    PubMed  Google Scholar 

  • Yoshikawa, M., Tsuda, M. and Takeuchi, Y. (1993) Resistance to fungal diseases in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, β-1,3-endoglucanase, from soybean.Naturwissenschaften 80, 417–20.

    Google Scholar 

  • Zhu, Q. and Lamb, C.J. (1991) Isolation and characterization of a rice gene encoding a basic chitinase.Mol. Gen. Genet. 226, 289–96.

    PubMed  Google Scholar 

  • Zhu, Q., Doerner, P.W. and Lamb, C.J. (1993) Stress induction and developmental regulation of a rice chitinase promoter in transgenic tobacco.Plant J. 3, 203–12.

    Google Scholar 

  • Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A. and Lamb, C.J. (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco.Bio/Technology 12, 807–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoud, S.A., Zhu, Q., Lamb, C. et al. Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogenPhytophthora megasperma f. spmedicaginis, but does not reduce disease severity of chitin-containing fungi. Transgenic Research 5, 313–323 (1996). https://doi.org/10.1007/BF01968941

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01968941

Keywords

Navigation