Skip to main content
Log in

Thermal analysis and kinetics of oxidation of molybdenum sulfides

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The thermal oxidation process of stoichiometric MoS2 and nonstoichiometric “Mo2S3”, together with the kinetics of oxidation of MoS2, were studied by using TG and DTA techniques in the Po2 range 1-0.0890 atm. MoS2 was oxidized completely to MoO3 in one step:

$$MoS_2 + 7/2O_2 \to MoO_3 + 2SO_2 $$

Irrespective of Po2 and the heating rate, “Mo2S3” was oxidized finally to MoO3, via the following four steps:

$$\begin{gathered} ''Mo_2 S_3 ''\xrightarrow{I}\gamma - Mo_4 O_{11(sur)} + ''Mo_2 S_3 ''\xrightarrow{{II}} \hfill \\ MoO_{2(sur)} + ''Mo_2 S_3 ''\xrightarrow{{III}}MoO_2 \xrightarrow{{IV}}MoO_3 \hfill \\ \end{gathered} $$

where (sur) refers to the surface layer.

The kinetic study revealed that the oxidation (α=0.01−0.90) of MoS2 to MoO2 was controlled by the kinetics

$$1 - (1 - \alpha )^{1/3} = kt$$

and that the apparent activation energies determined with the isothermal and the nonisothermal (10 deg min−1) method were 98.1±2.2 and 93.5±3.0 kJ mol−1, respectively, over the temperature range 540–625‡ and the Po2 range 0.612-0.129 atm. The relationship between the rate constantk and Po2 was determined.

Zusammenfassung

Mittels TG- und DTA-Methoden wurden im

$$MoS_2 + 7/2O_2 \to MoO_3 + 2SO_2 $$

-Bereich 1 bis 0,0890 atm thermische Oxydationsvorgänge an stöchiometrischem MoS2 und nichtstöchiometrischem „Mo2S3” sowie die Kinetik der Oxydation von MoS2 untersucht. MoS2 wird in einem Schritt vollständig zu MoO3 oxydiert:

$$MoS_2 + 7/2O_2 \to MoO_3 + 2SO_2 $$

Unabhängig von\(P_{O_2 } \) und der Aufheizgeschwindigkeit wird „Mo2S3“ über die folgenden vier Schritte zu MoO3 oxydiert:

$$\begin{gathered} ,,Mo_2 S_3 ''\xrightarrow{I}\gamma - Mo_4 O_{11(sur)} + ,,Mo_2 S_3 ''\xrightarrow{{II}} \hfill \\ MoO_{2(sur)} + ,,Mo_2 S_3 ''\xrightarrow{{III}}MoO_2 \xrightarrow{{IV}}MoO_3 \hfill \\ \end{gathered} $$

wobei sich (sur) auf die Oberflächenschicht bezieht. Laut kinetischer Untersuchungen läuft die Oxydation (α=0.01−0.90) von MoS2 zu MoO3 nach der Gleichung 1−(1−α)1/3=kt ab; die durch isotherme bzw. nichtisotherme (10 grd/min) Methoden bestimmten virtuellen Aktivierungsenergien betragen 98.1±2.2bzw. 93.5±3.0 kJ/mol im Temperaturbereich 540–625 ‡C und in einem\(P_{O_2 } \)-Bereich von 0.612-0.129 atm. Die Beziehung zwischen der Geschwindigkeitskonstantek und\(P_{O_2 } \) wurde ermittelt.

РЕжУМЕ

МЕтОДАМИ тг И ДтА В АтМ ОсФЕРЕ кИслОРОДА с\(P_{O_2 } \) 1–0,0890 АтМ ИжУЧЕНы пРОцЕс сы тЕРМИЧЕскОгО ОкИслЕ НИь стЕхИОМЕтРИЧЕск ОгО MoS2 И НЕстЕхИОМЕтРИЧЕскО гО «Mo2S3», НАРьДУ с кИНЕтИкОИ ОкИслЕНИь ДИсУльФИДА МОлИБДЕН А. MoS2 ОкИсльЕтсь ДО МОО3 В О ДНУ стАДИУ:

$$MoS_2 + 7/2O_2 \to MoO_3 + 2SO_2 $$

→МОО3 + 2 SO2 НЕстЕхИОМЕтРИЧЕскИ И «Mo2S3», НЕжАВИсИМО От Д АВлЕНИь кИслОРОДА И скОРОстИ НАгРЕВА ОкИсльЕтсь ДО кОНЕЧН ОгО МОО3 В ЧЕтыРЕ стАД ИИ:

$$MoS_2 + 7/2O_2 \to MoO_3 + 2SO_2 $$

, гДЕ пОВ. ОБОжНАЧАЕт пО ВЕРхНОстНыИ слОИ. ИжУ ЧЕНИЕ кИНЕтИкИ пОкАжАлО, Чт О ОкИслЕНИЕ ДИсУльФИДА МОлИБДЕН А ДО тРЕхОкИсИ МОлИБД ЕНА (А=0.01–0.90) пОДЧИНАЕтсь кИНЕтИЧ ЕскОМУ УРАВНЕНИУ 1−(1−А)1/3=kt. кАжУ ЩИЕсь ЁНЕРгИИ АктИВА цИИ, ОпРЕДЕлЕННыЕ ИжОтЕР МИЧЕскИМ И НЕИжОтЕРМИЧЕскИМ МЕ тОДОМ (0 гРАД·МИН−1), РАВ НьлИсь, сООтВЕтстВЕННО, 98.1±2.2 И 93.5± 3.0 кДж·МОль−1 В ОБлАстИ тЕМпЕРАтУР 540–625‡ И ДАВл ЕНИИ кИслОРОДА 0.612–0.129 АтМ. УстА НОВлЕНА ВжАИМОсВьжь МЕжДУ кО НстАНтОИ скОРОстИ k И

$$\begin{gathered} \ll Mo_2 S_3 \gg \xrightarrow{I}\gamma - Mo_4 O_{11(sur)} + \ll Mo_2 S_3 \gg \xrightarrow{{II}} \hfill \\ MoO_{2(sur)} + \ll Mo_2 S_3 \gg \xrightarrow{{III}}MoO_2 \xrightarrow{{IV}}MoO_3 \hfill \\ \end{gathered} $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Moh, Gh. Udubasa and R. Hüller, Metall, 28 (1974) 804.

    Google Scholar 

  2. H. Rau, J. Phys. Chem. Solids, 41 (1980) 765.

    Google Scholar 

  3. Y. Suzuki, T. Uchida, M. Wakihara and M. Taniguchi, Mat. Res. Bull., 16 (1981) 1085.

    Google Scholar 

  4. W. E. Jamison and S. L. Cosgrove, ASLE Trans., 14 (1971) 62.

    Google Scholar 

  5. J. N. Ong, University of Utah, Ph.D. Thesis, 1955.

  6. A. N. Zelikman and L. V. Belaevskaya, J. Inorg. Chem. USSR, 10 (1956) 2245.

    Google Scholar 

  7. I. Galateanu, Rev. Chim. Bucharest, 8 (1957) 363.

    Google Scholar 

  8. I. Galateanu, Ibid., 7 (1956) 531.

    Google Scholar 

  9. L. Condurier, I. A. Wilkomirsky and G. Morizot, Trans. Inst. Min. and Metall., Sect. C, 79 (1970) C34.

    Google Scholar 

  10. I. A. Wilkomirsky, A. P. Watkinson and J. K. Brimacombe, Ibid, 84 (1975) C197.

    Google Scholar 

  11. M. A. Doheim, M. Z. Abdel-Wahab and S. A. Rassoul, Met. Trans. B, 7B (1976) 477.

    Google Scholar 

  12. S. Ross and A. Sussman, J. Phys. Chem., 59 (1955) 889.

    Google Scholar 

  13. P. R. Amman and T. A. Loose, Met. Trans., 2 (1971) 889.

    Google Scholar 

  14. C. Cardoen, University of Utah, Ph.D. Thesis, June 1969.

  15. T. H. Etsell and S. N. Flengas, Metall. Trans., 3 (1972) 27.

    Google Scholar 

  16. S. K. Basu and M. Taniguchi, J. Thermal Anal., 29 (1984) 1209.

    Google Scholar 

  17. S. K. Basu and M. Taniguchi, Ibid, 30 (1985) 1129.

    Google Scholar 

  18. S. K. Basu and M. Tanigushi, Thermochim. Acta, 109 (1986) 253.

    Google Scholar 

  19. S. K. Basu and M. Taniguchi, Ibid, to be published.

  20. G. Ramadorai, M. E. Wadsworth and C. K. Hansen, Metall. Trans. B, 6B (1975) 579.

    Google Scholar 

  21. A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Sumiko Lubricant Co. Ltd. for supplying the single-crystals of MoS2 used in the above experiments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shigegaki, Y., Basu, S.K., Wakihara, M. et al. Thermal analysis and kinetics of oxidation of molybdenum sulfides. Journal of Thermal Analysis 34, 1427–1440 (1988). https://doi.org/10.1007/BF01914367

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01914367

Keywords

Navigation