Skip to main content
Log in

Co-metabolism of citrate and maltose byLactobacillus brevis subsp.lindneri CB1 citrate-negative strain: effect on growth, end-products and sourdough fermentation

  • Original Paper
  • Published:
Zeitschrift für Lebensmittel-Untersuchung und Forschung Aims and scope Submit manuscript

Abstract

Growth, substrates and end-product formation of the maltose and citrate co-metabolization byLactobacillus brevis subsp.lindneri CB1 citrate-negative strain were initially studied in synthetic medium. Compared to maltose (19 g/l) fermentation, the co-metabolization of maltose (10 g/l) plus citrate (9 g/l) caused faster cell growth, increased the concentrations of lactic acid and especially of acetic acid (from 0.7 g/l to 2.9 g/l), produced succinic acid (0.5 g/l) and reduced ethanol synthesis. Highest activities of acetate kinase, the same of lactate dehydrogenase and a reduced alcohol dehydrogenase activity were detected in cytoplasmic extracts of cells growing on maltose plus citrate. The breakdown of citrate depended upon the continuous presence of maltose in the growth medium. Upon depletion of citrate, the cells continued through the normal maltose fermentation, having a diauxic metabolic curve as shown by impedance measurements. Concentrations of citrate from 3 g/l to 15 g/l led to increases of acetic acid from 1.25 g/l to 5.55 g/l. Since maltose was naturally present during sourdough fermentation, the addition of 9 g citrate per kg wheat dough enabled the co-metabolization of maltose and citrate byL. brevis subsp.lindneri CB1. Compared with traditional sourdough fermentation, faster cell growth, a higher acetic acid concentration and a reduced quotient of fermentation were obtained by co-metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennes C, Veiga MC, Dubourguier HC, Touzel JP, Albagnac G, Naveau H, Nyns EJ (1981) Appl Environ Microbiol 57: 1046–1051

    Google Scholar 

  2. Axelsson LT (1993) In: Salminen S, von Wright A (eds) Lactic acid bacteria. Dekker, New York, pp 1–63

    Google Scholar 

  3. da Cunha MV, Foster MA (1992) J Bacteriol 174: 1013–1019

    PubMed  Google Scholar 

  4. Cogan TM (1987) J Appl Bacteriol 63: 551–558

    Google Scholar 

  5. Schmitt P, Diviès C, Merlot C (1990) Biotechnol Lett 12: 127–130

    Google Scholar 

  6. Schmitt P, Bernet N, Zarzell Y, Diviès C (1994) Milchwissenschaft 49: 183–185

    Google Scholar 

  7. Talarico TL, Axelsson LT, Novotny J, Fiuzat M, Dobrogosz WJ (1990) Appl Environ Microbiol 56: 943–948

    Google Scholar 

  8. Gobbetti M, Corsetti A, Rossi J (1995) Appl Microbiol Biotechnol 42: 939–944

    Google Scholar 

  9. Lütgens M, Gottschalk G (1980) J Gen Microbiol 119: 63–70

    PubMed  Google Scholar 

  10. Gobbetti M, Corsetti A, Rossi J (1994) Appl Microbiol Biotechnol 41: 456–460

    Google Scholar 

  11. Gobbetti M, Corsetti A, Rossi J (1994) World J Microbiol Biotechnol 10: 275–279

    Google Scholar 

  12. Gobbetti M, Simonetti MS, Rossi J, Cossignani L, Corsetti A, Damiani P (1994) J Food Sci 59: 881–884

    Google Scholar 

  13. Gobbetti M, Corsetti A, Rossi J (1994) Microbiol Alim Nutr 12: 9–15

    Google Scholar 

  14. Gobbetti M, Corsetti A, Rossi J, La Rosa F, De Vincenzi S (1994) Ital J Food Sci 1: 85–94

    Google Scholar 

  15. Kline L, Sugihara TF (1971) Appl Microbiol 21: 459–465

    PubMed  Google Scholar 

  16. Bergmeyer HU, Graßl M, Walter HS (1983) In: Bergemeyer HU (ed) Methods of enzymatic analysis, vol. 2. Weinheim, Deerfield Beach, Fla., pp 126–326

  17. Smith AF (1983) In: Bergemeyer HU (ed) Methods of enzymatic analysis, vol. 3. Weinheim, Deerfield Beach, Fla., pp 166–171

  18. Wahlefeld AW (1983) In: Bergemeyer HU (ed) Methods of enzymatic analysis, vol. 3. Weinheim, Deerfield Beach, Fla., pp 126–133

  19. Walsh B, Cogan TM (1974) J Dairy Res 41: 25–30

    Google Scholar 

  20. Quaglia G (1984) In: Quaglia G (ed) Scienza e tecnologia della panificazione. Chiriotti, Pinerolo, Italy, pp 295–323

    Google Scholar 

  21. Okigbo LM, Oberg CJ, Richardson GH (1985) J Dairy Sci 68: 2521–2527

    Google Scholar 

  22. Drinan DF, Tobin S, Cogan TM (1976) Appl Environ Microbiol 31: 481–486

    PubMed  Google Scholar 

  23. Radier F (1973) In: Carr JG, Cutting CV, Whiting GC (eds) Lactic acid bacteria in beverages and food. Academic Press, London, pp 17–35

    Google Scholar 

  24. Axelsson LT, Lindgren S (1987) J Appl Bacteriol 62: 433–438

    PubMed  Google Scholar 

  25. Spicher G (1983) In: Rehm HJ, Reed G (eds) Biotechnology, vol. 5. Verlag Chemie, Weinheim, Fla., pp 1–80

    Google Scholar 

  26. Correra C (1994) Il Latte 9: 866–869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobbetti, M., Corsetti, A. Co-metabolism of citrate and maltose byLactobacillus brevis subsp.lindneri CB1 citrate-negative strain: effect on growth, end-products and sourdough fermentation. Z Lebensm Unters Forch 203, 82–87 (1996). https://doi.org/10.1007/BF01267775

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01267775

Key words

Navigation