Skip to main content
Log in

On hen egg fractionation: applications of liquid chromatography to the isolation and the purification of hen egg white and egg yolk proteins

  • Review
  • Published:
Zeitschrift für Lebensmittel-Untersuchung und Forschung Aims and scope Submit manuscript

Abstract

Liquid chromatography has been used as a means of egg protein analysis or as a method for the purification of egg proteins. Several Chromatographic methods, including gel permeation, ion-exchange, reversed-phase, hydrophobic interaction, and immobilized-ligand-affinity chromatography, have been carried out for the separation or the purification of egg yolk or egg white proteins. Ion-exchange chromatography appears to be the most frequently used method for protein isolation and it is the easiest to adapt to a process scale. From an analytical point of view reversed-phase chromatography is, at the moment, the recommended method for egg white analysis. Egg white has been fractionated more often by liquid chromatography than has egg yolk. Several Chromatographic methods have been developed on a laboratory scale, but the application of these techniques on an industrial scale remains limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powrie WD, Nakai S (1986) In: Stadelman WJ, Cotterill OJ (eds) Egg science and technology. Macmillan, London

    Google Scholar 

  2. Li-Chan E, Nakai S (1989) Crit Rev Poult Sci 2: 21–58

    Google Scholar 

  3. Leloir LF, Goldenberg SH (1962) Methods Enzymol 5: 145–147

    Google Scholar 

  4. Tomimatsu Y, Donovan JW (1972) J Agric Food Chem 20: 1067–1073

    PubMed  Google Scholar 

  5. Stevens L (1991) Comp Biochem Physiol [B] 100: 1–9

    Google Scholar 

  6. Anastasi A, Brown MA, Kembhavi AA, Nicklin MJH, Sayers CA, Sunter DC, Barrett AJ (1983) Biochem J 211: 129–138

    PubMed  Google Scholar 

  7. Petrovic S, Vitale L (1990) Comp Biochem Physiol [B] 95: 589–595

    Google Scholar 

  8. Itoh T, Takeuchi S, Saito T (1993) Biosci Biotechnol Biochem 57: 1018–1019

    PubMed  Google Scholar 

  9. Zaman K, Zak Z (1989) Biochim Biophys Acta 980: 102–104

    Google Scholar 

  10. Murthy US, Sreekrishna K, Adiga PR (1979) Anal Biochem 92: 345–350

    PubMed  Google Scholar 

  11. Murthy CVR, Adiga PR (1984) Biochim Biophys Acta 786: 222–230

    PubMed  Google Scholar 

  12. Guérin-Dubiard C, Causeret D (1994) In: Thapon JL, Bourgeois CM (eds) Egg fractionation. Technique et Documentation, Lavoisier, Paris

    Google Scholar 

  13. Young LL, Gardner FA (1972) J Food Sci 37: 8–11

    Google Scholar 

  14. Awadé AC, Moreau S, Mollé D, Brulé G, Maubois JL (1994) J Chromatogr [A] 677: 279–288

    Google Scholar 

  15. Fernandez-Sousa JM, Perez-Castells R, Rodriguez R (1978) Biochim Biophys Acta 523: 430–434

    PubMed  Google Scholar 

  16. Nagase H, Harris ED Jr, Woessner JF, Brew K (1983) J Biol Chem 258: 7481–7489

    PubMed  Google Scholar 

  17. Turk V, Brzin J, Longer M, Ritonja A, Eropkin M (1983) Hoppe-Seylers Physiol Chem 364: 1487–1496

    Google Scholar 

  18. Burley RW, Cook WH (1961) Can J Biochem Physiol 39: 1295–1307

    PubMed  Google Scholar 

  19. McCully KA, Mok CC, Common RH (1962) Can J Biochem Physiol 40: 937–952

    Google Scholar 

  20. Tsutsui T, Obara T (1984) Agric Biol Chem 48: 1153–1160

    Google Scholar 

  21. Kocal JT, Nakai S, Powrie WD (1980) J Food Sci 45: 1761–1767

    Google Scholar 

  22. Burley RW, Vadehra DV (1979) Anal Biochem 94: 53–59

    PubMed  Google Scholar 

  23. Orlans E (1967) Immunology 12: 27–37

    PubMed  Google Scholar 

  24. Rose ME, Orlans E, Buttress N (1974) Eur J Immunol 4: 521–523

    PubMed  Google Scholar 

  25. Akita EM, Nakai S (1992) J Food Sci 57: 629–634

    Google Scholar 

  26. Yau WW, Kirkland JJ, Bly DD (1979) Modern size exclusion chromatography. Wiley, New York

    Google Scholar 

  27. Alderton G, Fevold HL (1946) J Biol Chem 164: 1–5

    Google Scholar 

  28. Guérin C, Brulé G (1992) Sci Aliments 12: 705–720

    Google Scholar 

  29. Huang JX, Guiochon G (1989) J Chromatogr 492: 431–469

    PubMed  Google Scholar 

  30. Rhodes MB, Azari PR, Feeney RE (1958) J Biol Chem 230: 399–408

    PubMed  Google Scholar 

  31. Jollès P, Zowall H, Jauregui-Adell J, Jollès J (1962) J Chromatogr 8: 363–368

    PubMed  Google Scholar 

  32. Melamed MD, Green NM (1963) Biochem J 89: 591–599

    PubMed  Google Scholar 

  33. Azari P, Baugh RF (1967) Arch Biochem Biophys 118: 138–144

    Google Scholar 

  34. Woodworth RC, Schade AL (1959) Arch Biochem Biophys 82: 78–82

    PubMed  Google Scholar 

  35. Fossum K, Whitaker JR (1988) Arch Biochem Biophys 125: 367–375

    Google Scholar 

  36. Ming F, Howell JA (1991) Bioseparation 2: 289–295

    PubMed  Google Scholar 

  37. Ming F, Howell JA (1992) Biotechnol Tech 6: 433–438

    Google Scholar 

  38. Ming F, Howell J, Acosta F, Hubble J (1993) Biotechnol Bioeng 42: 1086–1090

    Google Scholar 

  39. Li-Chan E, Nakai S, Sim J, Bragg DB, Lo KV (1986) J Food Sci 51: 1032–1036

    Google Scholar 

  40. Durance TD, Nakai S (1988) J Food Sci 53: 1096–1102

    Google Scholar 

  41. Piskarev VE, Shuster AM, Gabibov AG, Rabinkov AG (1990) Biochem J 265: 301–304

    PubMed  Google Scholar 

  42. Mandeles S (1960) J Chromatogr 3: 256–264

    Google Scholar 

  43. Parkinson TL (1972) J Sci Food Agric 23: 649–658

    PubMed  Google Scholar 

  44. Furka A, Sebestyen F (1969) Acta Biochim Biophys Acad Sci Hung 4: 379–383

    PubMed  Google Scholar 

  45. Levison PR, Toome DW, Badger SE, Brook BN, Carcary D (1989) Chromatographia 28: 170–178

    Google Scholar 

  46. Levison PR, Badger SE, Toome DW, Carcary D, Butts ET (1990) I Chem Symposium Series no. 118. Hemisphere, UK

    Google Scholar 

  47. Levison PR, Badger SE, Toome DW, Koscielny ML, Lane L, Butts ET (1992) J Chromatogr 590: 49–58

    PubMed  Google Scholar 

  48. Chung MC-M, Chan S-L, Shimizu S (1991) Int J Biochem 23: 609–616

    PubMed  Google Scholar 

  49. Jacobs K, Shen L, Benemariya H, Deelstra H (1993) Z Lebensm Unters Forsch 198: 236–238

    Google Scholar 

  50. Vachier MC, Piot M, Awadé AC (1995) J Chromatogr [B] 664: 201–210

    Google Scholar 

  51. Phillips DJ, Cheli PJ, Dion DM, Hodgdon HL, Pomfret AM, San Souci BR (1992) J Chromatogr 599: 239–253

    Google Scholar 

  52. Radomski MW, Cook WH (1964) Can J Biochem 42: 1203–1215

    PubMed  Google Scholar 

  53. Dixon DK, Cotterill OJ (1981) J Food Sci 46: 981–983

    Google Scholar 

  54. Zak Z, Ostrowski W (1963) Acta Biochim Pol 10: 427–441

    PubMed  Google Scholar 

  55. McBee LE, Cotterill OJ (1979) J Food Sci 44: 656–660

    Google Scholar 

  56. Wallace RA, Jared DW, Eisen AZ (1986) Can J Biochem 44: 1647–1655

    Google Scholar 

  57. Shimizu M, Fitzsimmons RC, Nakai S (1988) J Food Sci 53: 1360–1366

    Google Scholar 

  58. McCannel AA, Nakai S (1990) Can Inst Food Sci Technol J 23: 42–46

    Google Scholar 

  59. Hatta H, Kim M, Yamamoto T (1990) Agric Biol Chem 54: 2531–2535

    PubMed  Google Scholar 

  60. Seideman WE, Cotterill OJ, Gehrke CW (1969) Poult Sci 48: 884–893

    PubMed  Google Scholar 

  61. Shah BB, Singh RK (1992) J Food Process Preserv 16: 275–288

    Google Scholar 

  62. Fichtali J, Charter EA, Lo KV, Nakai S (1992) Biotechnol Bioeng 40: 1388–1394

    Google Scholar 

  63. Cherkasov IA, Kravchenko NA, Kaverzneva ED (1967) Mol Biol 1: 41–46

    Google Scholar 

  64. Pryme IF, Joner PE, Jensen HB (1969) Biochem Biophys Res Commun 36: 676–681

    PubMed  Google Scholar 

  65. Imoto T, Hayashi K, Funatsu M (1968) J Biochem 64: 387–392

    PubMed  Google Scholar 

  66. Cherkasov IA, Kravchenko NA (1969) Biokhimiya 34: 1089

    Google Scholar 

  67. Imoto T, Yagishita K (1973) Agric Biol Chem 37: 465–470

    Google Scholar 

  68. Yoshimoto T, Tsuru D (1974) J Biochem 76: 887–889

    PubMed  Google Scholar 

  69. Weaver GL, Kroger M, Katz F (1977) J Food Sci 42: 1084–1087

    Google Scholar 

  70. Muzzarelli RAA, Barontini G, Rocchetti R (1978) Biotechnol Bioeng 20: 87–94

    PubMed  Google Scholar 

  71. Capozza RC (1975) German patent no. 2,505,305

  72. Muzzarelli RAA, Barontini G, Rocchetti R (1976) Biotechnol Bioeng 18: 1445–1454

    PubMed  Google Scholar 

  73. Leuba JL (1976) German patent no. 2,522,484

  74. Tsumura N, Kasumi T (1976) Japanese patent no. 76482

  75. Bailon P, Nishikawa H (1977) Prep Biochem 7: 61–87

    PubMed  Google Scholar 

  76. Green NM (1975) Adv Protein Chem 29: 85–133

    PubMed  Google Scholar 

  77. McCormick DB (1965) Anal Biochem 13: 194–198

    PubMed  Google Scholar 

  78. Cuatrecasas P, Wilchek M (1988) Biochem Biophys Res Commun 33: 235–239

    Google Scholar 

  79. Wright LD, Valentik KA, Nepple HM, Cresson EL, Skeggs HR (1950) Proc Soc Exp Biol Med 74: 273–274

    PubMed  Google Scholar 

  80. Green NM (1963) Biochem J 89: 609–620

    PubMed  Google Scholar 

  81. Heney G, Orr GA (1981) Anal Biochem 114: 92–96

    PubMed  Google Scholar 

  82. Green NM (1968) Biochem J 101: 774–780

    Google Scholar 

  83. Blankenhorn G, Osuga DT, Lee HS, Feeney RE (1975) Biochim Biophys Acta 386: 470–478

    PubMed  Google Scholar 

  84. Merrill AH, McCormick DB (1978) Anal Biochem 89: 87–102

    PubMed  Google Scholar 

  85. Muniyappa K, Adiga PR (1979) Biochem J 177: 887–894

    PubMed  Google Scholar 

  86. Beeley JG, McCairns E (1972) Biochim Biophys Acta 271: 204–213

    PubMed  Google Scholar 

  87. Ogawa Y, Nakamura R, Sato Y (1983) Agric Biol Chem 47: 2085–2089

    Google Scholar 

  88. Cotterill OJ, Winter AR (1955) Poult Sci 34: 679–687

    Google Scholar 

  89. Robinson DS, Monsey JB (1972) J Sci Food Agric 23: 893–904

    Google Scholar 

  90. Kato A, Imoto T, Yagishita K (1975) Agric Biol Chem 39: 541–544

    Google Scholar 

  91. Kato A, Ogino K, Matsudomi N, Kobayashi K (1977) Agric Biol Chem 41: 1925–1929

    Google Scholar 

  92. Al-Mashikhi SA, Nakai S (1987) Agric Biol Chem 51: 2881–2887

    Google Scholar 

  93. Meslar HW, White HB III (1979) Methods Enzymol 62: 316–319

    PubMed  Google Scholar 

  94. Froehlich JA, Merrill AH Jr, Clagett CO, McCormick DB (1980) Comp Biochem Physiol [B] 66: 397–401

    Google Scholar 

  95. McCannel A, Nakai S (1989) Can Inst Food Sci Technol J 22: 487–490

    Google Scholar 

  96. Hassl A, Aspöck H (1988) J Immunol Methods 110: 225–228

    PubMed  Google Scholar 

  97. Yokoyama H, Peralta RC, Horikoshi T, Hiraoka J, Ikemori Y, Kuroki M, Kodama Y (1993) Poult Sci 72: 275–281

    Google Scholar 

  98. Jensenius JC, Andersen I, Hau J, Crone M, Koch C (1981) J Immunol Methods 46: 63–68

    PubMed  Google Scholar 

  99. Polson A, Coetzer T, Kruger J, von Maltzahn E, van der Merwe KJ (1985) Immunol Invest 14: 323–327

    PubMed  Google Scholar 

  100. Gesellchen PD, Tafur S, Schieids JE (1979) Proceedings of the sixth American Peptide Symposium, Georgetown University. Gross E, Meienhofer J (eds) Pierce, Rockford, Ill., USA

    Google Scholar 

  101. Harding DRK, Bishop CA, Tarttelin MF, Hancock WS (1981) Int J Pept Protein Res 18: 214–220

    PubMed  Google Scholar 

  102. Hearn MTW, Grego B, Bishop CA (1981) J Liq Chromatogr 4: 1725–1744

    Google Scholar 

  103. Heukeshoven J, Dernick R (1983) J Virol Methods 6: 283

    PubMed  Google Scholar 

  104. Itoh H, Nimura N, Kinoshita T, Nagae N, Nomura M (1991) Anal Biochem 199: 7–10

    PubMed  Google Scholar 

  105. Takeuchi S, Saito T, Itoh T (1992) Anim Sci Technol (Jpn) 63: 598–600

    Google Scholar 

  106. McCulloch JD (1993) J Liq Chromatogr 16: 2025–2038

    Google Scholar 

  107. Sheumack DD, Burley RW (1988) Anal Biochem 174: 548–551

    PubMed  Google Scholar 

  108. Durance TD, Nakai S (1988) Can Inst Food Sci Technol J 21: 279–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awade, A.C. On hen egg fractionation: applications of liquid chromatography to the isolation and the purification of hen egg white and egg yolk proteins. Z Lebensm Unters Forch 202, 1–14 (1996). https://doi.org/10.1007/BF01229676

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01229676

Key words

Navigation