Skip to main content
Log in

On the problem of diffusion in solids

Zum Problem der Diffusion in festen Körpern

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We rationalize diffusion in solids on the basis of a differential equation of balance expressing conservation of momentum for the diffusing species. The balance equation contains a tensor, modelling the stress supported by the diffusing species, and a diffusive force vector, modelling the exchange of momentum between the diffusing species and the species of the solid matrix. These two quantities, which are not identified in classical diffusion interpretations, are the basic ingredients of the theory. The effect of state and constitution of interdiffusing materials is reflected in the form of the constitutive equations for the stress and the diffusive force. Within our framework, the main results of classical theories are rigorously derived in a unified manner. New interesting findings are also deduced and their implications are discussed. The applicability of the theory to a variety of problems, ranging from metallurgy to polymer physics and geophysics, is illustrated.

Zusammenfassung

Wir beschreiben die Diffusion in festen Körpern auf der Basis von Bilanzdifferentialgleichungen, die die Erhaltung des Impulses der diffundierenden Teilchen ausdrücken. Die Bilanzgleichung enthält einen Tensor, der die durch das diffundierende Material hervorgerufenen Spannungen beschreibt und den Vektor einer Diffusionskraft, die den Impulsaustausch zwischen dem diffundierenden Medium und der Festkörpermatrix beschreibt. Diese zwei Größen, die in den klassischen Behandlungen des Diffusionsproblems nicht festgestellt wurden, sind die tragenden Säulen für diese Theorie. Zustand und Beschaffenheit der austauschenden Materialien werden durch konstitutive Gleichungen für die Spannungen und die diffusive Kraft beschrieben. Innerhalb dieses Rahmens werden die grundlegenden Ergebnisse der klassischen Theorie streng auf einheitliche Weise hergeleitet. Neue, interessante Ergebnisse werden abgeleitet und ihre Folgerungen besprochen.

Die Anwendbarkeit der Theorie auf verschiedene Problemstellungen, von der Metallurgie über Polymerphysik bis zur Geophysik, wird aufgezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fick, A.: Über Diffusion. Pogg. Ann. Phys. Chem.94, 58–86 (1855).

    Google Scholar 

  2. Darcy, H.: Les fontaines publiques de la ville de dijon. Paris: Dalmont. 1856.

    Google Scholar 

  3. Shewmon, P. G.: Diffusion in solids. New York: McGraw-Hill. 1963.

    Google Scholar 

  4. Adda, Y., Phillibert, J.: La diffusion dans les solides, Tomes I & II. Paris: Presses Universitaires de France. 1966.

    Google Scholar 

  5. Girifalco, L. A., Welch, D. O.: Point defects and diffusion in strained metals. New York: Gordon & Breach. 1967.

    Google Scholar 

  6. Flynn, C. P.: Point defects and diffusion. Oxford: Clarendon Press. 1972.

    Google Scholar 

  7. Aravin, V. I., Numerov, S. N.: Theory of fluid flow in undeformable porous media. (Translated from Russian.) New York: Daniel Davey & Co. 1965.

    Google Scholar 

  8. Scheidegger, A. E.: The physics of flow through porous media. Toronto: University of Toronto Press. 1974.

    Google Scholar 

  9. Atkin, R. J., Craine, R. E.: Continuum theories of mixtures: Basic theory and historical development. Quart. J. Mech. Appl. Math.29, 209–244 (1976).

    Google Scholar 

  10. Atkin, R. J., Craine, R. E.: Continuum theories of mixtures: Applications. J. Inst. Math. Appl.17, 153–207 (1976).

    Google Scholar 

  11. Bowen, R. M.: Theory of mixtures, in: Continuum physics III (Eringen, A. C., ed.). New York: Academic Press. 1976.

    Google Scholar 

  12. Truesdell, C.: Sulle Basi della termomeccanica. Rend. Lincei (8)22, 33–38 158 to 166 (1957).

    Google Scholar 

  13. Truesdell, C.: Mechanical basis for diffusion. J. Chem. Phys.37, 2336–2344 (1962).

    Google Scholar 

  14. Aifantis, E. C.: Diffusion of a perfect fluid in a linear elastic stress field. Mech. Res. Comm.3, 245–250 (1976).

    Google Scholar 

  15. Aifantis, E. C., Gerberich, W. W.: Gaseous diffusion in a stressed thermoelastic solid — I: The thermomechanical formulation. Acta Mech.28, 1–24 (1977).

    Google Scholar 

  16. Aifantis, E. C., Gerberich, W. W.: Gaseous diffusion in a stressed thermoelastic solid — II: Thermodynamic structure and transport theory. Acta Mech.28, 25–47 (1977).

    Google Scholar 

  17. Aifantis, E. C.: Introducing a multi-porous medium. Developments in mechanics8, 209–211 (1977).

    Google Scholar 

  18. Barenblatt, G. I., Zheltov, Iu. P., Kochina, I. N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). PMM24, 1286–1303 (1960). (Transl. of Priklad. Mat. Mekh.24, 852–864).

    Google Scholar 

  19. Spencer, A. J. M.: Theory of invariants, in: Continuum physics I (Eringen, A. C., ed.). New York: Academic Press. 1971.

    Google Scholar 

  20. Cattaneo, C.: Atti del Seminario Matematico e Fisico della Universita di Modena3, 3–21 (1948).

    Google Scholar 

  21. Cattaneo, C.: Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée. Compt. Rend. Acad. Sci.247, 431–433 (1958).

    Google Scholar 

  22. Maxwell, J. C.: On the dynamical theory of gases. Phil. Trans. Roy. Soc. (Lond.)157, 49–88 (1867).

    Google Scholar 

  23. Barenblatt, G. I.: On certain boundary-value problems for the equations of seepage of a liquid in fissured rocks. PMM27, 513–518 (1963). (Transl. of Priklad. Mat. Mekh.27, 784–793.)

    Google Scholar 

  24. Ting, T. W.: Certain non-steady flows of second-order fluids. Arch. Rat. Mech. Anal.14, 1–26 (1963).

    Google Scholar 

  25. Chen, P. J., Gurtin, M. E.: On a theory of heat conduction involving two temperatures. ZAMP19, 614–627 (1968).

    Google Scholar 

  26. Ting, T. W.: Parabolic and pseudoparabolic partial differential equations. J. Math. Soc. Japan21, 440–453 (1969).

    Google Scholar 

  27. Ting, T. W.: A cooling process according to two-temperature theory of heat conduction. J. Math. Anal. Appl.45, 23–31 (1974).

    Google Scholar 

  28. Volterra, V.: Theory of functionals and of integral and integro differential equations. New York: Dover Publications. 1959.

    Google Scholar 

  29. Gurtin, M. E., Pipkin, A. C.: A general theory of heat conduction with finite wave speeds. Arch. Rat. Mech. Anal.31, 113–126 (1968).

    Google Scholar 

  30. Van Leeuwen, H. P.: A quantitative model of hydrogen induced grain boundary cracking. J. Corros., NACE29, 197–204 (1973).

    Google Scholar 

  31. Nowacki, W.: Certain problems of thermo-diffusion in solids. Arch. Mech.23, 731–755 (1971).

    Google Scholar 

  32. Gurtin, M. E.: On the linear theory of diffusion through an elastic solid. Proc. Conf. Environmental Degradation Engng. Matl's. pp. 107–119, Blacksburg, 1977.

  33. Suklje, L.: Rheological aspects of soil mechanics. London: Wiley-Interscience. 1969.

    Google Scholar 

  34. Bear, J.: Dynamics of fluids in porous media. New York: Elsevier. 1972.

    Google Scholar 

  35. Aifantis, E. C.: A new interpretation of diffusion in regions with high-diffusivity paths. A continuum approach. Acta Metallurgica27, 683–691 (1979).

    Google Scholar 

  36. Aifantis, E. C.: Continuum basis for diffusion in regions with multiple diffusivity. J. Appl. Phys.50, 1334–1338 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aifantis, E.C. On the problem of diffusion in solids. Acta Mechanica 37, 265–296 (1980). https://doi.org/10.1007/BF01202949

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202949

Keywords

Navigation