Skip to main content
Log in

Restriction enzyme analysis of the chloroplast and nuclear 45s ribosomal DNA ofAllium sectionsCepa andPhyllodolon (Alliaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Estimates of the phylogenetic relationships among cultivated and wildAllium species would benefit from identification of molecular characters. Restriction enzyme analysis of the chloroplast DNA (cpDNA) of the bulb onion (Allium cepa), Japanese bunching onion (A. fistulosum), wildAllium species in sect.Cepa andPhyllodolon, and the outgroupsA. ampeloprasum andA. tuberosum detected 39 polymorphisms.Allium cepa andA. vavilovii were identical for all characters. Cladistic analysis generated three most-parsimoniousWagner trees of 44 steps differing only in a zero-length branch.Allium fistulosum andA. altaicum (sect.Phyllodolon) comprised a monophyletic lineage separated from theA. cepa andA. vavilovii of sect.Cepa. The unresolved node was composed ofA. galanthum, A. roylei, and the lineage containingA. cepa, A. vavilovii, A. fistulosum, andA. altaicum. The clade containingA. altaicum, A. cepa, A. fistulosum, A. galanthum, A. roylei, andA. vavilovii remained resolved for strict consensus ofWagner trees of 48 steps or less.Allium pskemense andA. oschaninii were increasingly distant.Allium oschaninii has been proposed as the progenitor of the bulb onion, but was more closely related to the common progenitor of all species in sect.Cepa andPhyllodolon. Phylogenies estimated from cpDNA characters usingDollo parsimony resulted in a single most-parsimonious tree of 46 steps and agreed with phylogenies based onWagner parsimony. Polymorphic restriction enzyme sites in the 45s ribosomal DNA were not used to estimate phylogenies because of uncertain homologies, but are useful for identifying interspecific hybrids. The maternal phylogenies estimated in this study help to distinguish wildAllium species closely related to the bulb onion. Although not in agreement with classifications based on morphology, the phylogenies closely reflected crossability among species in sect.Cepa andPhyllodolon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthou, T., Matthieu, C., Vendel, F., 1983: Chloroplast and mitochondrial DNA variation as indicator of phylogenetic relationships in the genusCoffea L. — Theoret. Appl. Genet.65: 77–84.

    Google Scholar 

  • Chase, M., Palmer, J., 1989: Chloroplast DNA systematics of lilioid monocots, feasibility, resources, and an example from theOrchidaceae. — Amer. J. Bot.76: 1720–1730.

    Google Scholar 

  • Coates, D., Cullis, C., 1987: Chloroplast DNA variability amongLinum species. — Amer. J. Bot.74: 260–268.

    Google Scholar 

  • Corriveau, J., Coleman, A., 1988: Rapid screening method to detect biparental inheritance of plastid DNA and results from over 200 angiosperm species. — Amer. J. Bot.75: 1443–1458.

    Google Scholar 

  • Doyle, J., Beachy, R., 1985: Ribosomal gene variation in soybean (Glycine) and its relatives. — Theoret. Appl. Genet.70: 369–376.

    Google Scholar 

  • El-Gadi, A., Elkington, T., 1975: Comparison of the Giemsa C-band karyotypes and the relationships ofAllium cepa, A. fistulosum, andA. galanthum. — Chromosoma51: 19–23.

    Google Scholar 

  • Ellis, P., Eckenrode, C., 1979: Factors influencing resistance inAllium spp. to onion maggot. — Bull. Entomol. Soc. Amer.25: 151–153.

    Google Scholar 

  • Emsweller, S., Jones, H., 1935: An interspecific hybrid inAllium. — Hilgardia9: 265–273.

    Google Scholar 

  • —, —, 1938: Crossing-over, fragmentation, and formation of new chromosomes in anAllium species hybrid. — Bot. Gaz.99: 729–772.

    Google Scholar 

  • Felsenstein, J., 1985: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution39: 783–791.

    Google Scholar 

  • Flavell, R., O'Dell, M., Sharp, P., Nevo, E., Beiles, A., 1986: Variation in the intergenic spacer of ribosomal DNA of wild wheat,Triticum dicoccoides, in Israel. — Mol. Biol. Evol.3: 547–558.

    Google Scholar 

  • Gerlach, W., Bedbrook, J., 1979: Cloning and characterization of ribosomal RNA genes from wheat and barley. — Nucl. Acid Res.7: 1869–1885.

    Google Scholar 

  • Hanelt, P., 1985: On taxonomy, chorology and ecology of the wild species ofAllium L. sect.Cepa (Mill.)Prokh. — Flora176: 99–116.

    Google Scholar 

  • —, 1990: Taxonomy, evolution, and history. — InRabinowitch, H., Brewster, J., (Eds): Onions and allied crops, pp. 1–26. — Boca Raton: CRC Press.

    Google Scholar 

  • Havey, M., 1991: Phylogenetic relationships among cultivatedAllium species from restriction enzyme analysis of the chloroplast genome. — Theoret. Appl. Genet.81: 752–757.

    Google Scholar 

  • —, 1992: Restriction enzyme analysis of the nuclear 45s ribosomal DNA of six cultivated Alliums (Alliaceae). — Pl. Syst. Evol.181: 45–55.

    Google Scholar 

  • Jones, H., 1944: Problems and progress in onion breeding. — Herbertia11: 175–294.

    Google Scholar 

  • Jones, R., Rees, H., 1968: Nuclear DNA variation inAllium. — Heredity23: 591–605.

    Google Scholar 

  • Kofoet, A., Zinkernagel, V., 1990: Resistance to downy mildew (Peronospora destructor) inAllium species. — Z. Pflanzenk.97: 13–23.

    Google Scholar 

  • —,Kik, W., Wietsma, W., de Vries, J., 1990: Inheritance of resistance to downy mildew fromAllium roylei Stern in the backcrossAllium cepa L. × (A. roylei ×A. cepa). — Pl. Breed.105: 144–149.

    Google Scholar 

  • Kung, S., Zhu, Y., Chen, K., 1982:Nicotiana chloroplast genome. III. Chloroplast DNA evolution. — Theoret. Appl. Genet.61: 73–79.

    Google Scholar 

  • Levan, A., 1933: Cytological studies inAllium. IV.Allium fistulosum. — Svensk Bot. Tidskr.27: 211.

    Google Scholar 

  • Maeda, T., 1937: Chiasma studies inAllium fistulosum, Allium cepa, and their F1, F2 and backcross hybrids. — Japan. J. Genet.13: 146–159.

    Google Scholar 

  • McCollum, G., 1971: Sterility of some interspecificAllium hybrids. — J. Amer. Soc. Hort. Sci.96: 359–362.

    Google Scholar 

  • —, 1974: Chromosome behavior and sterility of hybrids between the common onion,Allium cepa, and the related wildA. oschaninii. — Euphytica23: 699–709.

    Google Scholar 

  • van der Meer, Q., de Vries, J., 1990: An interspecific cross betweenAllium roylei Stearn andAllium cepa L. and its backcross toA. cepa. — Euphytica47: 29–31.

    Google Scholar 

  • Palmer, J., Zamir, D., 1982: Chloroplast DNA evolution and phylogenetic relationships inLycopersicon. — Proc. Natl. Acad. Sci. USA79: 5006–5010.

    Google Scholar 

  • Peffley, E., 1986: Evidence for chromosomal differentiation ofAllium fistulosum andA. cepa. — J. Amer. Soc. Hort. Sci.111: 126–129.

    Google Scholar 

  • Porter, D., Jones, H., 1933: Resistance of some of the cultivated species ofAllium to pink root. — Phytopathology23: 290–298.

    Google Scholar 

  • van Raamsdonk, L., 1990: Biosystematics of cultivated plants and their wild relatives. — InKawano, S., (Ed.): Biological approaches and evolutionary trends in plants, pp. 51–66. — New York: Academic Press.

    Google Scholar 

  • -de Vries, T., 1992: Biosystematic studies inAllium L. sect.Cepa. — J. Linn. Soc. Bot. (in press).

  • -Wietsma, W., de Vries, J., 1992: Crossing experiments inAllium L. sect.Cepa. — J. Linn. Soc. Bot. (in press).

  • Saghai-Maroof, M., Soliman, K., Jorgensen, R., Allard, R., 1984: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. — Proc. Natl. Acad. Sci. USA81: 8014–8018.

    PubMed  Google Scholar 

  • Saini, S., Davis, G., 1967: Compatibility in someAllium species. — Hort. Sci.91: 401–409.

    Google Scholar 

  • —, —, 1970: Karyotypic analysis of someAllium species. — J. Amer. Soc. Hort. Sci.95: 102–105.

    Google Scholar 

  • Schaffer, H., Sederoff, R., 1981: Improved estimation of DNA fragment lengths from agarose gels. — Anal. Biochem.115: 113–122.

    PubMed  Google Scholar 

  • Schubert, I., Ohle, H., Hanelt, P., 1983: Phylogenetic conclusions from Giemsa banding and NOR staining in top onions (Liliaceae). — Pl. Syst. Evol.143: 245–256.

    Google Scholar 

  • van der Valk, P., de Vries, S., Everink, J., Verstappen, F., de Vries, F., 1991: Pre-and post-fertilization barriers to backcrossing the interspecific hybrid betweenAllium fistulosum L. andA. cepa L. withA. cepa. — Euphytica53: 201–209.

    Google Scholar 

  • Vosa, C., 1976: Heterochromatic patterns inAllium. I. The relationship between the species of the Cepa group and its allies. — Heredity36: 383–392.

    Google Scholar 

  • Vvedenskii, A., 1944: The GenusAllium in the USSR. — Herbertia11: 65–218.

    Google Scholar 

  • Walker, J., Jones, H., Clarke, A., 1947: Smut resistance in anAllium species hybrid. — J. Agric. Res.69: 1–8.

    Google Scholar 

  • Wendelbo, P., 1971: Alliaceae. — InRechinger, K. H. Jr., (Ed.): Flora Iranica76, pp. 1–99. — Graz: Akadem. Druck- und Verlagsanstalt.

    Google Scholar 

  • White, T., Bruns, T., Lee, S., Taylor, J., 1990: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. — In PCR Protocols: a guide to methods and applications, pp. 315–322. — New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havey, M.J. Restriction enzyme analysis of the chloroplast and nuclear 45s ribosomal DNA ofAllium sectionsCepa andPhyllodolon (Alliaceae). Pl Syst Evol 183, 17–31 (1992). https://doi.org/10.1007/BF00937732

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937732

Key words

Navigation