Skip to main content

Advertisement

Log in

Nitrogen cycling across the sediment-water interface in an eutrophic, artificially oxygenated lake

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Processes controlling the nitrogen (N) exchange between water and sediment in eutrophic Lake Sempach were studied using three different independent methods: benthic flux chambers, interstitial water data and hypolimnetic mass balances. The sediments released NH +4 (1.1–16.1 mmoles m−2 d−1), NO -2 (0.1–0.4 mmoles m−2 d−1) and dissolved organic N (<0.25 mmoles m−2 d−1). A net NO -3 consumption (2.4–11.1 mmoles m−2 d−1) related to the NO -3 concentrations in the overlying water was observed in all benthic chamber experiments. The flux of the reactive species NO -3 and NH +4 was found to depend on hydrodynamic conditions in the water overlying the sediment. For this reason, benthic chambers overestimated the fluxes of inorganic N compared to the other methods. Thus, in short-term flux chamber experiments the sediment may either become a sink or a source for inorganic N depending on the O2 concentration in the water overlying the sediment and the stirring rate. As demonstrated with a15NO -3 experiment, nitrate-ammonification accounted for less than 12% of the total NO -3 consumption. After six years of artificial oxygenation in Lake Sempach, a decrease in hypolimnetic total inorganic nitrogen (TIN) was observed in the last two years. The occurrence of dense mats of H2S-oxidizingBeggiatoa sp. indicated micro-aerobic conditions at the sediment surface. Under these conditions, a shorter distance between the ecological niches of nitrifying and denitrifying bacteria, and therefore a faster NO -3 -transport, can possibly explain the lowering of TIN by enhanced net denitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, M., R. A. Jahnke, R. Weiss, W. Martin, D. T., Heggie, J. Orchardo and T. Sowers, 1989. Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim. Cosmochim. Acta 53, 685–697.

    Article  CAS  Google Scholar 

  • Bendschneider, K. and R. J. Robinson, 1952. A new spectrophotometric method for the determination of nitrite in seawater. J. Mar. Res. 11, 87–96.

    CAS  Google Scholar 

  • Berelson, W. M., D. E. Hammond, K. L. Smith, R. A. Jahnke, A. H. Devol, K. R. Hinga, G. T. Rowe and F. Sayles, 1987. In situ benthic flux measurement devices: bottom lander technology. MTS Journal 21, 26–32.

    Google Scholar 

  • Boynton, W. R., W. M. Kemp, G. C. Osborne, K. R. Kaumeyer and M. C. Jenkins, 1981. Influence of water circulation rate on in situ measurements of benthic community respiration. Mar. Biol. 65, 185–190.

    Article  Google Scholar 

  • Brandl, H., 1987. Mikrobielle Prozesse unter oxidationsmittel-limitierten Bedingungen an der Sediment-Wasser-Übergangszone in Seen. Ph. D. thesis. University of Zürich, 201 pp.

  • Devol, A. H., 1987. Verification of flux measurements made with in situ benthic chambers. Deep-Sea Res. 34, 1007–1026.

    Article  CAS  Google Scholar 

  • Downes, M. T., 1978. An improved hydrazine reduction method for the automated determination of low nitrate levels in freshwater. Water Res. 12, 673–675.

    Article  CAS  Google Scholar 

  • Emerson, S., 1976. Early diagenesis in anaerobic lake sediments: Chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta 40, 925–934.

    Article  CAS  Google Scholar 

  • Fendinger, N. J. and D. D. Adams, 1987. Nitrogen gas supersaturation in the recent sediments of Lake Erie and two polluted harbors. Wat. Res. 21, 1371–1374.

    Article  CAS  Google Scholar 

  • Fiedler, R. and G. Proksch, 1975. The determination of nitrogen-15 by emission and mass spectrometry in biochemical analysis: A review. Anal. Chim. Acta 78, 1–62.

    Article  CAS  Google Scholar 

  • Fowler, B., J. Drake, D. Hemenway and S. I. Heaney, 1987. An inexpensive water circulation system for studies of chemical exchange using intact sediment cores. Freshw. Biol. 17, 509–511.

    Article  CAS  Google Scholar 

  • Gächter, R., 1987. Lake restoration. Why oxygenation and artificial mixing cannot substitute for a decrease in the external phosphorus loading. Schweiz. Z. Hydrol. 49, 170–185.

    Article  Google Scholar 

  • Gächter, R. and S. I. Meyer, 1990. Mechanisms controlling fluxes of nutrients across the sediment/water interface in a eutrophic lake, in Sediments: Chemistry and Toxicity of in-Place Pollutants, R. Baudo, J. P. Giesy and H. Muntau (eds.). Lewis Publishers, Inc., Ann Arbor, MI, 131–162.

    Google Scholar 

  • Gächter, R., S. I. Meyer and A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33, 1542–1558.

    Article  Google Scholar 

  • Gächter, R., A. Mares, E. Grieder, A. Zwyssig and P. Höhener, 1989. Auswirkungen der Belüftung und Sauerstoffbegasung auf den P-Haushalt des Sempachersees. Eine Zwischenbilanz nach fünf Jahren Betriebsdauer. Wasser-Energie-Luft 11/12 (1989), 335–341.

    Google Scholar 

  • Gardner, W. S., T. F. Nalepa and J. M. Malczyk, 1987. Nitrogen mineralization and denitrification in Lake Michigan sediments. Limnol. Oceanogr. 32, 1226–1238.

    Article  CAS  Google Scholar 

  • Henriksen, K. and W. M. Kemp, 1988. Nitrification in estuarine and coastal marine sediments, in Nitrogen Cycling in Coastal Marine Environments, T. H. Blackburn and J. Sørensen (eds.). SCOPE, John Wiley, New York.

    Google Scholar 

  • Hickey, C. W., 1988. Benthic chamber for use in rivers: Testing against oxygen mass balances. J. Environ. Engineering 114, 828–845.

    Article  CAS  Google Scholar 

  • Höhener, P., 1990. Der Stickstoffhaushalt von Seen, illustriert am Beispiel des Sempachersees. Ph. D. Thesis. Swiss Federal Institute of Technology, Diss. ETH (Zurich, Switzerland) Nr. 9157, 133 pp.

  • Jørgensen, B. B. and N. P. Revsbech, 1983. Colorless sulfur bacteria Beggiatoa spp. and Thiovolum spp. in O2 and H2S-microgradients. Appl. Environ. Microbiol. 45, 1261–1270.

    PubMed  PubMed Central  Google Scholar 

  • Jørgensen, B. B. and N. P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30, 111–122.

    Article  Google Scholar 

  • Kairesalo, T. and T. Matilainen, 1988. The importance of low flow rates to the phosphorus flux between littoral and pelagial zones. Verh. Internat. Verein. Limnol. 23, 2210–2215.

    CAS  Google Scholar 

  • Kemp, W. M., R. L. Wetzel, W. R. Boynton, C. F. D'Elia and J. C. Stevenson, 1982. Nitrogen cycling and estuarine interfaces: Some current concepts and research directions, in Estuarine Comparisons, V. S. Kennedy, (ed.). Academic Press, New York.

    Google Scholar 

  • Lemmin, U. and D. M. Imboden, 1987. Dynamics of bottom currents in a small lake. Limnol. Oceanogr. 32, 62–75.

    Article  Google Scholar 

  • Li, Y. H. and S. Gregory, 1974. Diffusion of ions in sea water and deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714.

    Article  CAS  Google Scholar 

  • Morse, J. W., 1974. Calculation of diffusive fluxes across the sediment-water interface. J. Geophys. Res. 79, 5045–5048.

    Article  Google Scholar 

  • Nydahl, F., 1978. On the peroxodisulfate oxidation of total nitrogen in waters to nitrate. Water Res. 12, 1123–1130.

    Article  CAS  Google Scholar 

  • Opdyke, B. N., G. Gust and J. R. Ledwell, 1987. Mass transfer from smooth alabaster surfaces in turbulent flows. Geophys. Res. Letters 14, 1131–1134.

    Article  Google Scholar 

  • Santschi, P. H., P. Bower, U. P. Nyffeler, A. Azevedo and W. S. Broecker, 1983. Estimates of the resistance to chemical transport posed by the deep-sea boundary layer. Limnol. Oceanogr. 28, 899–912.

    Article  CAS  Google Scholar 

  • Santschi, P. H., P. Höhener, G. Benoit and M. Buchholtz, 1990. Chemical processes at the sedimentwater interface. Marine chemistry 34, 344–367.

    Google Scholar 

  • Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significane. Limnol. Oceanogr. 33/4, 702–724.

    Article  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799–801.

    Article  CAS  Google Scholar 

  • Srna, R. F. and A. Baggeley, 1975. Kinetic responses of perturbated marine nitrification systems. J. Water Pollu. Control Fed. 47, 472–486.

    CAS  Google Scholar 

  • Stadelmann, P., 1988. Zustand des Sempachersees vor und nach der Inbetriebnahme der see-internen Massnahmen: Künstlicher Sauerstoffeintrag und Zwangszirkulation. Wasser-Energie-Luft 80, 81–96.

    Google Scholar 

  • Sundby, B., L. G. Andersson, P. O. J. Hall, A. Iverfeldt, R. M. M. van der Loeff and S. F. G. Westerlund, 1986. The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim. Cosmochim. Acta 50, 1281–1288.

    Article  CAS  Google Scholar 

  • Sweerts, J. P. and D. DeBeer, 1989. Nitrate in lake sediments measured with a microelectrode. Appl. Environ. Microbiol 55, 754–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sweerts, J. P., V. St Louis and T. E. Cappenberg, 1989. Oxygen concentration profiles and exchange in sediment cores with circulated overlying water. Freshw. Biol. 21, 401–409.

    Article  Google Scholar 

  • Sweerts, J. P., D. DeBeer, L. P. Nielsen, H. Verdouw, J. C. van den Heuvel, Y. Cohen and T. E. Cappenberg, 1990. Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments. Nature 344, 762–763.

    Article  CAS  Google Scholar 

  • Ullman, W. J. and R. C. Aller, 1982. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr. 27, 552–556.

    Article  CAS  Google Scholar 

  • van der Loeff, R. M. M., L. G. Anderson, P. O. J. Hall, A. Iverfeldt, A. B. Josefson, B. Sundby and S. F. G. Westerlund, 1984. The asphyxiation technique: An approach to distinguishing between molecular diffusion and biologically mediated transport at the sediment-water interface. Limnol. Oceanogr. 29, 675–686.

    Article  Google Scholar 

  • Weast, R. C., M. J. Astle and W. H. Beyer. (eds.), 1985. CRC Handbook of Chemistry and Physics, 66th edition. Boca Raton, Florida.

  • Wimbush, M. and W. Munk, 1970. The benthic boundary layer, in The Sea, Vol. 4, M. N. Hill (ed.). Wiley, New York.

    Google Scholar 

  • Wüest, A., 1987. Ursprung und Grösse von Mischungsprozessen im Hypolimnion natürlicher Seen. Ph. D. Thesis. Swiss Federal Institute of Technology, Diss ETH (Zurich, Switzerland) Nr. 8350, 144 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höhener, P., Gächter, R. Nitrogen cycling across the sediment-water interface in an eutrophic, artificially oxygenated lake. Aquatic Science 56, 115–132 (1994). https://doi.org/10.1007/BF00877203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877203

Key words

Navigation