Skip to main content
Log in

Improvement of Escherichia coli strains overproducing lysine using recombinant DNA techniques

  • Published:
European journal of applied microbiology and biotechnology Aims and scope Submit manuscript

Summary

Several genes of the lysine biosynthetic pathway were cloned separately on the high copy number plasmid pBR322 (Richaud et al. 1981). These hybrid plasmids were used to transform an Escherichia coli strain TOC R 21 that overproduces lysine due to mutations altering the aspartokinase reaction. The synthesis of lysine was studied in these different strains. It appears that only plasmids containing the dapA gene (encoding dihydrodipicolinate synthetase) lead to an increase in lysine production. This result allows us to identify this reaction as the limiting biosynthetic step in strain TOC R 21 and indicates that such a method of gene amplification can be used to improve strains overproducing metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boy E, Patte JC (1972) Multivalent repression of aspartic semialdehyde dehydrogenase in E. coli K12. J Bacteriol 112:84–94

    Google Scholar 

  • Boy E, Reinisch F, Richaud C, Patte JC (1976) Role of lysyl-tRNA in the regulation of lysine biosynthesis in E. coli K12. Biochimie 58:213–218

    Google Scholar 

  • Boy E (1978) Regulation de la synthèse de la lysine chez E. coli K12. Thesis of Doctorat d'Etat, Université d'Orsay, France

    Google Scholar 

  • Boy E, Borne F, Patte JC (1979) — Isolation and identification of mutants constitutive for aspartokinase III synthesis in E. coli K12. Biochimie 61:1151–1160

    Google Scholar 

  • Chenais J, Richaud C, Ronceray J, Cherest H, Surdin-Kerjan Y, Patte JC (1981) Construction of hybrid plasmids containing the lysA gene of E. coli: studies of expression in E. coli and Saccharomyces cerevisiae. Mol Gen Genet 182:456–461

    Google Scholar 

  • Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–96

    Google Scholar 

  • Clewell DB (1972) Nature of ColE1 plasmid replication in E. coli in the presence of chloramphenicol. J Bacteriol 110:667–676

    Google Scholar 

  • Cohen GN, Rickenberg HV (1956) Concentration spécifique réversible des amino-acides chez E. coli. Ann Inst Pasteur Paris 91:693–720

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu I (1972) Non chromosomal antibiotic resistance in bacteria; genetic transformation of E. coli by R factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Google Scholar 

  • Debabov VG (1981) Application of gene engineering for construction of overproducing microbial strains. Abstracts of the FEMS Symposium on overproduction of microbial products, Hradec Kralove, Czechoslovakia

  • Farkas W, Gilvarg C (1965) The reduction step in diaminopimelic biosynthesis. J Biol Chem 240:4717–4722

    Google Scholar 

  • Hegeman GD, Cohen GN, Morgan R (1970) Aspartic semialdehyde dehydrogenase. In: Colowick and Kaplan (eds) Methods in Enzymology, vol. XVII. Academic Press, New York, pp 708–713

    Google Scholar 

  • Mandel M, Higa A (1970) Calcium dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    Google Scholar 

  • Nakayama K (1973) L-lysine and diaminopimelic acid. In: Genetics of Industrial micro-organisms. Czechoslovakia Acad. of Sciences Praha, p 222

    Google Scholar 

  • Nordström KL, Ingram CC, Lundback A (1972) Mutations in R factors in E. coli causing an increased number of R-factor copies per chromosome. J Bacteriol 110:562–569

    Google Scholar 

  • Patte JC, Morand P, Boy E, Richaud C, Borne F (1980) The relA locus and the regulation of lysine biosynthesis in E. coli. Mol Gen Genet 179:319–325

    Google Scholar 

  • Plichon B, Lucquin M, Guillaume J (1971) Vérification expérimentale des cinétiques de croissance bactérienne obtenues par simulation sur ordinateur. Ann Inst Pasteur Lille 22, pp 37–43

    Google Scholar 

  • Richaud F, Richaud C, Haziza C, Patte JC (1981) Isolement et purification des gènes d'E. coli K12 impliqués dans la biosynthèse de la lysine. C R Acad Sci Paris série III 293:507–512

    Google Scholar 

  • Thèze J, Margarita D, Cohen GN, Borne F, Patte JC (1974) Mapping of the three aspartokinases and two homoserine dehydrogenases of E. coli. J Bacteriol 117:133–143

    Google Scholar 

  • Vanek Z, Hojtalek Z, Cudlin J (1973) Genetics of industrial microorganisms. Czechoslovakia Academy of Sciences eds, Praha

  • Work E (1957) Reaction of ninhydrin in acid solution with straight chain amino-acids containing two amino-groups and its application for the estimation of L-ε diaminopimelic acid. Biochemical J 67:416–428

    Google Scholar 

  • Yugari Y, Gilvarg C (1965) The condensation step for diaminopimelate synthesis. J Biol Chem 240:4710–4716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reverend, B.DL., Boitel, M., Deschamps, A.M. et al. Improvement of Escherichia coli strains overproducing lysine using recombinant DNA techniques. European J. Appl. Microbiol. Biotechnol. 15, 227–231 (1982). https://doi.org/10.1007/BF00499961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00499961

Keywords

Navigation