Skip to main content

Early History of the Breeding of Amino Acid-Producing Strains

  • Chapter
  • First Online:
Amino Acid Fermentation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 159))

Abstract

Amino acid production started in Japan in 1908 with the extraction of monosodium glutamate (MSG) from acid hydrolysates of proteins. In addition to extraction, other methods of amino acid production include chemical synthesis, fermentation, and enzymatic synthesis both for glutamic acid and other amino acids. In this chapter, we review the historical transition of these production methods; currently, fermentation is the chief production method of amino acids. All wild-type microorganisms possess a negative feedback control system (feedback inhibition and repression) on the enzymes within the amino acid biosynthetic pathways. Therefore, techniques for the development of amino acid-overproducing strains and also for the establishment of enzymatic processes for the synthesis of amino acids were developed to artificially release these feedback controls. The key techniques used to bypass these controls are as follows: (a) artificial acceleration of the easy efflux of intracellularly synthesized amino acids outside of cells; (b) limitation of the concentration level of feedback inhibitors (amino acids) using auxotrophic mutants; (c) genetic desensitization of key enzymes to feedback inhibition by mutation and selection of amino acid analog-resistant mutants; (d) amplification of genes coding for desensitized biosynthetic enzymes; (e) disruption of amino acid degradation activity; and (f) application of enzyme reactions free from feedback controls for amino acid synthesis. Selection and breeding of amino acid producers by the application of these techniques is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ikeda K (1908) A new flavor enhancer. J Tokyo Chem Soc 30:820–836

    Google Scholar 

  2. Abe S, Takayama K, Kinoshita S (1967) Taxonomical studies on glutamic acid producing bacteria. J Gen Appl Microbiol 13:279–301

    Article  Google Scholar 

  3. Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Transfer of Brevibacterium divaricatum DSM2029T, Brevibacterium flavum DSM20411, Brevibacterium lactofermentum DSM20412 and DSM1412, and Corynebacterium lilium DSM20317, to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41:255–260

    Article  CAS  PubMed  Google Scholar 

  4. Shiio I, Ujigawa K (1978) Enzymes of the glutamate and aspartate synthetic pathways in a glutamate-producing bacterium, Brevibacterium flavum. J Biochem 84:647–657

    Article  CAS  PubMed  Google Scholar 

  5. Shiio I, Nakamori S (1989) Coryneform bacteria. In: Neway JO (ed) Fermentation process development of industrial organisms. Marcel Dekker, Inc., New York/Basel, pp 133–168

    Google Scholar 

  6. Udaka S, Kinoshita S (1958) Studies on L-ornithine fermentation. I. The biosynthetic pathway on L-ornithine in Micrococcus glutamicus. J Gen Appl Microbiol 4:272–282

    Article  CAS  Google Scholar 

  7. Nakayama K, Kitada S, Kinoshita S (1961) Studies on L-lysine fermentation. I. The control mechanism on lysine accumulation by homoserine and threonine. J Gen Appl Microbiol 7:145–154

    Article  CAS  Google Scholar 

  8. Okumura S, Shibuya M, Konishi S, Ishida M, Shiro T (1964) The fermentative production of L-citrulline. Agric Biol Chem 28:742–743

    Article  Google Scholar 

  9. Adelberg EA (1958) Selection of bacterial mutants which excrete antagonists of antimetabolites. J Bacteriol 76:326

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Moyed HS (1960) False feedback inhibition: inhibition of tryptophan biosynthesis by 5-methyltryptophan. J Biol Chem 235:1098–1102

    CAS  PubMed  Google Scholar 

  11. Cohen GN, Patte JC (1963) Some aspects of the regulation of amino acid biosynthesis in a branched pathway. Cold Spring Harb Symp Quant Biol 28:513–516

    Article  CAS  Google Scholar 

  12. Shiio I, Nakamori S (1970) Microbial production of L-threonine. II. Production by α-amino-β-hydroxyvaleric acid resistant mutants of glutamate producing bacteria. Agric Biol Chem 34:448–456

    CAS  Google Scholar 

  13. Shiio I, Miyajima R, Nakamori S (1970) Homoserine dehydrogenase genetically desensitized to the feedback inhibition in Brevibacterium flavum. J Biochem 68:856–861

    Google Scholar 

  14. Reinscheid DJ, Eikmanns BJ, Sahm H (1991) Analysis of Corynebacterium glutamicum hom gene coding for a feedback resistant homoserine dehydrogenase. J Bacteriol 173:3228–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sugimoto M, Tanaka A, Suzuki T, Matsui H, Nakamori S, Takagi H (1997) Sequence analysis of functional region of homoserine dehydrogenase genes from L-lysine and L-thereonine-producing mutants of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1760–1762

    Article  CAS  PubMed  Google Scholar 

  16. Debabov VG (1983) Construction of strains producing L-threonine. In: Ikeda Y, Beppu T (eds) Proceedings of 4th international symposium on genetics of industrial microorganisms, 1982, Kodansha Ltd., Tokyo, pp 254–256

    Google Scholar 

  17. Chibata I, Tosa T, Sato T (1986) Aspartic acid. In: Aida K et al (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 144–151

    Google Scholar 

  18. Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shiio S, Sano K (1969) Microbial production of L-lysine. II. Production by mutants sensitive to threonine or methionine. J Gen Appl Microbiol 15:267–287

    Article  CAS  Google Scholar 

  20. Sano K, Shiio I (1970) Microbial production of L-lysine. III. Production by mutants resistant to S-(2-aminoethyl)-L-cysteine. J Gen Appl Microbiol 16:373–391

    Article  CAS  Google Scholar 

  21. Tosaka O, Hirakawa H, Takinami K, Hirose Y (1979) Regulation of lysine biosynthesis by leucine in Brevibacterium lactofermentum. Agric Biol Chem 42:1501–1506

    Google Scholar 

  22. Kase H, Nakayama K (1972) Production of L-threonine by analog-resistant mutants. Agric Biol Chem 36:1611–1621

    Article  CAS  Google Scholar 

  23. Komatsubara S, Kisumi M, Chibata I (1983) Transductional construction of a threonine hyperproducing strain of Serratia marcescens; lack of feedback control of three aspartokinase and two homoserine dehydrogenase. Appl Environ Microbiol 45:1445–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiio I, Nakamori S (1969) Microbial production of L-threonine. I. Production by Escherichia coli mutants resistant to α-amino-β-hydroxyvaleric acid. Agric Biol Chem 33:1152–1160

    CAS  Google Scholar 

  25. Kurahashi O, Beyou A, Takinami K, Jarry B, Richaud F (1988) Stabilized amplification of genetic information in Gram-negative bacteria with Mu phage and its application in L-threonine production. In: Societe Francaise de Microbiologie (ed) Proceedings of 6th international symposium on genetics of industrial microorganisms, Strasbourg, p 178

    Google Scholar 

  26. Nakamori S (1986) Threonine and homoserine. In: Aida K et al (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 131–143

    Google Scholar 

  27. Sugimoto S, Shiio I (1982) Tryptophan synthase and production of L-tryptophan in regulatory mutants. Agric Biol Chem 46:2711–2718

    CAS  Google Scholar 

  28. Hagino H, Nakayama K (1975) L-tryptophan production by analog-resistant mutants derived from a phenylalanine and tyrosine double auxotroph of Corynebacterium glutamicum. Agric Biol Chem 39:343–349

    CAS  Google Scholar 

  29. Kurahashi O, Yokozeki K, Nakamori S, Yamanaka S, Enei H (1987) Production of L-tryptophan by 5-fluorotryptophan and indolmycin resistant mutants of Bacillus subtilis. Agric Biol Chem 51:231–235

    CAS  Google Scholar 

  30. Shiio I (1986) Tryptophan, phenylalanine, and tyrosine. In: Aida K et al (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 188–206

    Google Scholar 

  31. Nakamori S, Morioka H, Yoshinaga F, Yamanaka S (1982) Fermentative production of L-proline by DL-3,4-dehydroproline resistant mutants of glutamate producing bacteria. Agric Biol Chem 46:487–491

    CAS  Google Scholar 

  32. Sugiura M, Takagi T, Kisumi M (1985) Proline production by regulatory mutants of Serratia marcescens. Appl Microbiol Biotechnol 21:213–219

    Article  CAS  Google Scholar 

  33. Sugiura M, Imai Y, Takagi T, Kisumi M (1985) Improvement of proline-producing strain of Serratia marcescens by subcloning of a mutant allele of the proline gene. J Biotechnol 3:47–58

    Article  CAS  Google Scholar 

  34. Kubota K, Kageyama K, Maeyashiki I, Yamada K, Okumura S (1972) Fermentative production of L-serine from glycine by Corynebacterium glycinophilum nov. sp. J Gen Appl Microbiol 18:365–375

    Article  CAS  Google Scholar 

  35. Morinaga Y, Yamada H (1986) Serine. In: Aida K et al (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 217–223

    Google Scholar 

  36. Hibino W, Ikkai T, Ito M, Gusyatiner MM, Burikov F (2000) Development of direct fermentation of L-serine from sugars. In: Abst Ann Meet Japan Soc Biosci Biotechnol Agrochem (in Japanese). Japan Society of Bioscience, Biotechnology, and Agrochemistry, p 247

    Google Scholar 

  37. Araki K (1986) Histidine. In: Aida K et al (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 247–256

    Google Scholar 

  38. Yoshida H (1986) Arginine, citrulline, and ornithine. In: Aida K et al (eds) Biotechnology of amino acid production. Kodansha/Elsevier, Tokyo/Amsterdam, pp 131–143

    Google Scholar 

  39. Kisumi M, Ashikaga Y, Chibata I (1960) Studies on the fermentative preparation of L-aspartic acid from fumaric acid. Bull Agric Chem Soc Japan 24:296–305

    Article  CAS  Google Scholar 

  40. Sato T, Nishida Y, Tosa T, Chibata I (1979) Immobilization of Escherichia coli cells containing aspartase activity with kappa-carrageenan. Enzymatic properties and application for L-aspartic acid production. Biochim Biophys Acta 570:179–186

    Article  CAS  PubMed  Google Scholar 

  41. Hashimoto S, Katsumata R (1998) L-Alanine fermentation by an alanine racemase-deficient mutant of the DL-alanine hyperproducing bacterium, Arthrobacter oxydans HAP-1. J Ferment Bioeng 86:385–390

    Article  CAS  Google Scholar 

  42. Shibatani T, Kakimoto R, Chibata I (1979) Stimulation of L-aspartate β-decarboxylase formation by L-glutamate in Pseudomonas dacunhae and improved production of L-alanine. Appl Environ Microbiol 38:359–364

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sato T, Takamatsu S, Yamamoto K, Umemura I, Tosa T, Chibata I (1982) Production of L-alanine from ammonium fumarate using two types of immobilized microbial cells. In: Chibata I, Fukui S, Wingard LB Jr (eds) Enzyme engineering, vol 6. Springer, New York, pp 271–272

    Chapter  Google Scholar 

  44. Enei H, Nakazawa H, Okumura S, Yamada H (1973) Microbial synthesis of L-tyrosine and 3,4-dihydroxyphenyl-L-alanine. V. Synthesis of L-tyrosine or 3,4-dihydroxyplenyl-L-alanine from pyruvic acid, ammonia and phenol or pyrocatechol. Agric Biol Chem 37:725–735

    CAS  Google Scholar 

  45. Yamada H, Kumagai H (1978) Microbial and enzymatic processes for amino production. Pure Appl Chem 50:1117–1127

    Article  CAS  Google Scholar 

  46. Sano K, Yokozeki K, Tamura F, Yasuda N, Noda I, Mitsugi K (1977) Microbial conversion of DL-2-amino-△2thiazole-4-carboxylic acid to L-cysteine and L-cystine: screening of microorganisms and identification of products. Appl Environ Microbiol 34:806–810

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Takahashi S, Namba H, Ikenaka Y, Yajima K (2000) Application of a bio-reactor to the D-amino acid production process. Nippon Nogei Kagaku Kaishi (in Japanese) 74:961–966

    Article  CAS  Google Scholar 

  48. Yamada H, Takahashi S, Kii Y, Kumagai H (1978) Microbial transformation of hydantoins to amino acids. I. Distribution of hydantoin hydrolyzing activity in microorganisms. J Ferment Technol 56:484–491

    CAS  Google Scholar 

  49. Shibasaki T, Mori H, Ozaki A (2000) Enzymatic production of trans-4-hydroxy-L-proline by the region- and stereospecific hydroxylation of L-proline. Biosci Biotechnol Biochem 64:746–750

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Nakamori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nakamori, S. (2016). Early History of the Breeding of Amino Acid-Producing Strains. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_25

Download citation

Publish with us

Policies and ethics