Skip to main content
Log in

Petrogenesis of the Laguna del Maule volcanic complex, Chile (36° S)

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

From 33°–42° S in central-south Chile, there are numerous volcanoes which form part of the Andean magmatic arc caused by subduction of the Nazca plate beneath western South America. The <0.3 m.y. old Laguna del Maule volcanic complex at 36° S is in a transition region between volcanoes at 33°–34° S formed dominantly of hornblende-bearing andesite and volcanoes south of 37° S dominantly composed of basalt and basaltic andesite. The Laguna del Maule complex ranges in composition from basalt (∼0.3 m.y.) to rhyolite (post-glacial). Although there is abundant evidence for magma mixing, basalt and rhyolite have similar Sr and Nd isotopic ratios, thereby requiring that the mixing members had the same isotopic ratios (87Sr/ 86Sr ∼0.70419 and 143Nd/144Nd ∼0.51274). In contrast, dacitic dikes and a volcanic neck which also have evidence for magma mixing are isotopically distinct. Major and trace element abundances are consistent with a genetic relationship between the basalt and rhyolite, either by low-pressure, plagioclase-dominated, fractional crystallization or by partial melting of a plagioclase-rich assemblage. There is no evidence that the rhyolites contain more of a crustal component than the associated basic volcanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee AL, Ray L (1970) Correction factors for electron microprobe microanalysis of silicates, oxides, carbonates, phosphates and sulfates. Anal Chem 42:1408–1414

    Google Scholar 

  • Arth JG (1976) Behavior of trace elements during magmatic processes — a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47

    Google Scholar 

  • Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the NAZCA plate beath South America. Geology 4:686–692

    Google Scholar 

  • Barker F (1981) Introduction to special issue on granites and rhyolites: a commentary for the nonspecialist. J Geophys Res 86:10131–10135

    Google Scholar 

  • Barriero B (1982) Lead isotopic evidence for crustal contamination of Andean magmas. EOS 63:456

    Google Scholar 

  • Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, Inc. New York, pp 1286

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–403

    Google Scholar 

  • Cameron K, Hanson GN (1982) Rare earth evidence concerning the origin of voluminous mid-Tertiary rhyolitic ignimbrites and related volcanic rocks, Sierra Madre Occidental, Chihuahua, Mexico. Geochim Cosmochim Acta 46:1489–1503

    Google Scholar 

  • Cameron M, Bagby WL, Cameron KL (1980) Petrogenesis of voluminous mid-Tertiary ignimbrites of the Sierra Madre Occidental, Chihuahua, Mexico. Contrib Mineral Petrol 74:271–284

    Google Scholar 

  • Crecraft HR, Nash WP, Evans SH (1981) Late Cenozoic volcanism at Twin Peaks, Utah: Geology and petrology. J Geophys Res 86:10303–10320

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Letts 53:189–202

    Google Scholar 

  • Deruelle B (1982) Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. J Volc Geoth Res 14:77–124

    Google Scholar 

  • Deruelle B, Harmon RS, Moorbath S (1983) Combined Sr-O isotope relationships and petrogenesis of Andean volcanics of South America. Nature 302:814–816

    Google Scholar 

  • Drake RE (1976) Chronology of Cenezoic igneous and tectonic events in the Central Chilean Andes — Latitudes 35°30′ to 36° S. J Volc Geoth Res 1:285–295

    Google Scholar 

  • Dudas MJ, Schmitt RA, Harward ME (1971) Trace element partitioning between volcanic plagioclase and dacitic pyroclastic matrix. Earth Planet Sci Letts 11:440–446

    Google Scholar 

  • Dunn T, McCallum IS (1982) The partitioning of Zr and Nb between diopside and melts in the system diopside-albite-anorthite. Geochim Cosmochim Acta 46:623–629

    Google Scholar 

  • Francis PW, Thorpe RS, Moorbath S, Kretschmar GA, Hammill M (1980) Strontium isotope evidence for crustal contamination of calc-alkaline volcanic rocks from Cerro Galan, northwest Argentina. Earth Planet Sci Letts 48:257–267

    Google Scholar 

  • Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086

    Google Scholar 

  • Gerlach DC, Frey FA, Hickey R, Moreno-Roa H, Hildreth W (1983) Geochemistry of Puyehue Volcano and Cordon Caulle, Southern Andes (40.5° S). EOS 64:326

    Google Scholar 

  • Gill J (1981) Orogenic Andesites and Plate Tectonics. Berlin, Heidelberg, New York, Springer, 390 pp

    Google Scholar 

  • Grove TL, Baker MB (1984) Phase equilibrium controls on the tholeiitic vs calc-alkaline differentiation trends. J Geophys Res 89:3253–3274

    Google Scholar 

  • Grove TL, Gerlach DC, Sando TW (1982) Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contrib Mineral Petrol 80:160–182

    Google Scholar 

  • Gonzalez O, Vergara M (1962) Reconocimiento geologico de la cordillera de los Andes entre los paralelos 35°y38° latitud sur. Publ Dept Geol Univ Chile 24:121

    Google Scholar 

  • Grunder AL (1983) The Calabozos volcanic system: a major Quaternary silicic center in the central Chilean Andes. EOS 64:326

    Google Scholar 

  • Guest JE (1969) Upper Tertiary ignimbrites in the Andean Cordillera of part of the Antofagasta Province, northern Chile. Geol Soc Amer Bull 80:337–362

    Google Scholar 

  • Hanson G (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Letts 38:26–43

    Google Scholar 

  • Hanus V, Vanek J (1978) Morphology of the Andean Wadati-Benioff Zone, andesitic volcanism, and tectonic features of the NAZCA plate. Tectonophysics 44:65–77

    Google Scholar 

  • Harmon RS, Moorbath S, McHugh JM (1983) O-, Sr-, and Pb- isotope relationships in Recent Andean volcanics. EOS 64:325

    Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Google Scholar 

  • Hart SR, Allegre CJ (1980) Trace-element constraints on magma genesis, In: Hargraves RB (ed) Physics of Magmatic Processes. Princeton University Press, Princeton, pp 121–161

    Google Scholar 

  • Hart SR, Brooks C (1977) The geochemistry and evolution of the early Precambrian mantle. Contrib Mineral Petrol 61:109–128

    Google Scholar 

  • Hawkesworth CJ, Norry MJ, Roddick JC, Baker PE (1979) 143Nd/144Nd, 87Sr/86Sr, and incompatible element variations in calc-alkaline andesites and plateau lavas from South America. Earth Planet Sci Letts 42:45–57

    Google Scholar 

  • Hawkesworth CJ, Hammill M, Gledhill AR, Van Calsteren P, Rogers G (1982) Isotope and trace element evidence for late stage intra-crustal melting in the High Andes. Earth Planet Sci Letts 58:240–254

    Google Scholar 

  • Helz RT (1973) Phase relations of basalts in their melting range at \(P_{H_2 O}\) = 5 kb as a function of oxygen fugacity part I: mafic phases. J Petrol 14:249–302

    Google Scholar 

  • Helz RT (1976) Phase relations of basalts in their melting ranges of \(P_{H_2 O}\) = 5 kb, part II: melt compositions. J Petrol 17:139–193

    Google Scholar 

  • Herron EM (1983) Chile margin near 38° S: Evidence for a genetic relationship between continental and marine geologic features or a case of curious coincidences. Geol Soc Am Memoir 154:755–760

    Google Scholar 

  • Hickey RL, Frey FA (1984) Sources for arc volcanics: Evidence from central South Chilean basalts In Proceedings of the ISEM Field Conference on Open Magmatic Systems Dungan MA, Grove TL, Hildreth W (eds). Inst Study of Earth and Man, Southern Methodist Univ, Dallas

    Google Scholar 

  • Hickey RL, Frey FA, Lopez-Escobar L, Munizaga F (1982) Nd and Sr isotopic data bearing on the origin of Andean volcanics from S. Central Chile. Geol Soc Am Abs with Progs 14:514

    Google Scholar 

  • Hickey RL, Frey F, Gelach D, Lopez-Escobar L (1983) Isotopic and trace element data bearing on the origin of volcanic rocks from Central South Chile. EOS 64:326

    Google Scholar 

  • Hickey RL, Gerlach DC, Frey FA (1984) Geochemical variations in volcanic rocks from central-south Chile (33°–42° S): Implications for their petrogenesis. In: Andean Magmatism: Chemical and Isotopic Constraints, Harmon R, Barreiro B (eds) Shiva Pub, Cheshire, England 72–95

    Google Scholar 

  • Hildreth W, Drake RE (1983) 1932 eruption of Quizapu, Central Chilean Andes. Geol Soc Am Abs with Progs 15:390

    Google Scholar 

  • Hildreth W, Grunder AL, Drake RE (1984) The Loma Seca Tuff and the Calabozos Caldera: a major ash-flow and caldera complex in the Southern Andes of Central Chile. Geol Soc Amer Bull 95:45–54

    Google Scholar 

  • Ila P, Frey FA (1984) Utilization of neutron activation analysis in the study of geologic materials. Atomkernenergie Kerntechnik 44 supplement:710–716

    Google Scholar 

  • James DE (1982) A combined O, Sr, Nd and Pb isotopic and trace element study of crustal contamination in central Andean lavas, I. Local geochemical variations. Earth Planet Sci Letts 57:47–62

    Google Scholar 

  • Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94:341–361

    Google Scholar 

  • Klerkx J, Deutsch S, Pichler H, Zeil W (1977) Strontium isotopic composition and trace-element data bearing on the origin of Cenozoic volcanic rocks of the central and southern Andes. J Vol Geoth Res 2:49–71

    Google Scholar 

  • Lanphere MA, Cameron KL, Cameron M (1980) Sr isotope geochemistry of voluminous rhyolitic ignimbrites and related rocks, western Mexico. Nature 286:594–596

    Google Scholar 

  • Lomnitz C (1962) On Andean structure. J Geophys Res 76:351–363

    Google Scholar 

  • Lopez-Escobar L, Frey FA, Vergara M (1976) Andesites from central-south Chile: Trace element abundances and petrogenesis. In: Gonzalez-Ferran O (ed). Proceedings Symposium Special Series, Rome, pp 725–761

  • Lopez-Escobar L, Frey FA, Vergara M (1977) Andesites and high- alumina basalts from the central-south Chile High Andes: Geochemical evidence bearing on their petrogenesis. Contrib Mineral Petrol 63:199–228

    Google Scholar 

  • Lopez-Escobar L, Vergara M, Frey FA (1981) Petrology and geochemistry of lavas from Antuco Volcano, a basaltic volcano of the Southern Andes. J Volc Geoth Res 11:329–352

    Google Scholar 

  • Lowrie A, Hey R (1981) Geological and geophysical variations along the western margin of Chile near lat. 33° to 36° S and their reaction to Nazca plate subduction. Geol Soc Am Memoir 154:741–754

    Google Scholar 

  • Luhr JF, Carmichael ISE (1980) The Colima volcanic complex, Mexico. Contrib Mineral Petrol 71:343–372

    Google Scholar 

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Google Scholar 

  • Mann AC (1983) Trace element geochemistry of high alumina basalt-andesite-dacite-rhyodacite lavas of the Main Volcanic Series of Santorini volcano, Greece. Contrib Mineral Petrol 84:43–57

    Google Scholar 

  • Moreno H (1974) Airplane flight over active volcanoes of centralsouth Chile. IAVCEI Guide book excursion D-3, Int Symposium Volcanology Andean and Antarctic Volcanology Problems. Santiago, Chile, 56 pp

  • Moreno H (1976) The upper Cenozoic volcanism in the Andes of southern Chile (from 40°00′ to 41°30′ S.L.). In: Gonzalez-Ferran O (ed) Proceedings Symposium on Andean and Antarctic Volcanology Problems. IAVCEI Special Series, Rome, pp 143–171

  • Munizaga F (1978) Geologia del complejo volcanico Laguna del Maule. Thesis, Univ de Chile, Santiago, 157 pp

  • Munizaga F, Mantovani M (1976) Razones iniciales Sr87/Sr86 de rocas volcanicas pertenecientes al complejo “Laguna del Maule”, Chile Central. Proc I Congreso Geologico Chileno, Dept Geol Univ Chile, Tomo II:F145-F152

    Google Scholar 

  • Nagasawa H, Schnetzler C (1971) Partitioning of rare earth, alkali and alkaline earth elements between phenocrysts and acidic igneous magma. Geochim Cosmochim Acta 35:953–968

    Google Scholar 

  • Palacios C, Oyarzun R (1975) Relationship between depth to Benioff Zone and K and Sr concentrations in volcanic rocks of Chile. Geology 3:595–596

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Google Scholar 

  • Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of island-arc basalts: Implications for mantle sources. Chem Geol 30:227–256

    Google Scholar 

  • Pichler H, Zeil W (1972) The Cenozoic rhyolite-andesite association of the Chilean Andes. Bull Volcanol 35:424–452

    Google Scholar 

  • Rhodes JM (1983) Homogeneity of lava flows: chemical data for historic Mauna Loan eruptions. J Geophys Res (Supplement) 88:A869-A879

    Google Scholar 

  • Schock HH (1977) Trace element partitioning between phenocrysts of plagioclase, pyroxenes and magnetite and the host pyroclastic matrix. J Radioanal Chem 38:327–340

    Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201

    Google Scholar 

  • Stauder W (1973) Mechanism and spatial distribution of Chilean earthquakes with relation to subduction of the oceanic plates. J Geophys Res 78:5033–5061

    Google Scholar 

  • Stern CR, Futa K (1982) Nd and Sr isotopic ratios of calc-alkaline volcanic rocks from the southern Andes. EOS 63:456

    Google Scholar 

  • Thorpe RS, Francis PW (1979) Variations in Andean andesite compositions and their petrogenetic significance. Tectonophysics 57:53–70

    Google Scholar 

  • Thorpe RS, Francis PW, Moorbath S (1979) Rare earth and strontium isotope evidence concerning the petrogenesis of North Chilean ignimbrites. Earth Planet Sci Letts 42:359–367

    Google Scholar 

  • Vernieres J, Joron JL, Treuil M, Coulon C, DuPuy C (1977) Co-efficient de partage de quelques elements en trace entre plagioclase et verre dans les ignimbrites-implications petrogenetiques. Chem Geol 19:309–325

    Google Scholar 

  • Zindler A (1982) Nd and Sr isotopic studies of komatiites and related rocks. In: Arndt N, Nisbet EG (eds) Komatiites, Allen and Unwin. Boston, pp 399–420

    Google Scholar 

  • Zindler A, Hart SR, Frey FA, Jakobsson SP (1979) Nd and Sr isotope ratios and rare earth element abundance in Reykjanes Peninsula basalts: evidence for mantle heterogeneity beneath Iceland. Earth Planet Sci Letts 45:249–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, F.A., Gerlach, D.C., Hickey, R.L. et al. Petrogenesis of the Laguna del Maule volcanic complex, Chile (36° S). Contr. Mineral. and Petrol. 88, 133–149 (1984). https://doi.org/10.1007/BF00371418

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371418

Keywords

Navigation