Skip to main content
Log in

Deformation capability and protective role of zirconia coatings on stainless steel

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZrO2 coatings were obtained by the alkoxide route and deposited on to stainless steel using the dip-coating technique. The starting solutions were prepared by mixing zirconium tetrabutoxide, isopropanol, acetylacetone. The water content for the hydrolytic reaction came from atmospheric moisture. These coatings were characterized by scanning electron microscopy, X-ray fluorescence, Fourier transform-infrared spectroscopy, and X-ray diffraction. Their deformation capability was studied by using the stretch deformation test. It is worth noting that these coatings deposited on stainless steel have the capacity to deform extensively without apparent cracks or fracture. Their ability to protect the metallic substrate against corrosion, in a neutral chloride medium, was investigated. For this purpose, the pitting potential of the coated metal was measured by the potentiodynamic polarization technique and the a.c. impedance diagram of the coating was recorded in the potentiostatic mode at the rest potential. The variation in the pitting potentials revealed a temporary increase in the corrosion resistance of coated stainless steel, which disappeared after ageing of the coatings in the chloride solution. During ageing, the coating resistance deduced from the complex diagram via an equivalent circuit, decreases, thus showing a deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dislich and E. Hussmann, Thin Solid Films 77 (1981) 129.

    Article  CAS  Google Scholar 

  2. S. Sakka, J. Non-Cryst. Solids 73 (1985) 651.

    Article  CAS  Google Scholar 

  3. F. Orgaz and H. Rawson, ibid. 82 (1986) 378.

    Article  CAS  Google Scholar 

  4. K. Yamada, T. Y. Chow, T. Horihata and M. Nagata, ibid. 100 (1988) 316.

    Article  CAS  Google Scholar 

  5. B. D. Fabes and D. R. Uhlmann, J. Am. Ceram. Soc. 73 (1990) 978.

    Article  CAS  Google Scholar 

  6. A. Matsuda, Y. Matsuno, S. Katayama, T. Tsuno, N. Tohge and T. Minami, J. Ceram. Soc. Jpn 99 (1991) 545.

    Article  CAS  Google Scholar 

  7. R. L. Nelson, J. D. F. Ramsay, J. L. Woodhead, J. A. Cairns and J. A. A. Crossley, Thin Solid Films 81 (1981) 329.

    Article  CAS  Google Scholar 

  8. M. J. Bennett, J. Vac. Sci. Technol. 2 (1984) 800.

    Article  CAS  Google Scholar 

  9. N. Tohge, A. Matsuda and T. Minami, Chem. Express 2 (3) (1987) 141.

    CAS  Google Scholar 

  10. L. Yang and J. Cheng, J. Non-Cryst. Solids 112 (1989) 442.

    Article  Google Scholar 

  11. K. Izumi, M. Murakami, T. Deguchi, A. Morita, N. Tohge and T. Minami, J. Am. Ceram. Soc. 72 (1989) 1465.

    Article  CAS  Google Scholar 

  12. O. Desanctis, L. Gomez, N. Pellegri, C. Parodi, A. Marajofski and A. Duran, J. Non-Cryst. Solids 121 (1990) 338.

    Article  CAS  Google Scholar 

  13. M. Shane and M. L. Mecartney, J. Mater. Sci. 25 (1990) 1537.

    Article  CAS  Google Scholar 

  14. L. J. De Vore and N. R. Osborn, in “Better Ceramics Through Chemistry”, Materials Research Society Symposium Proceedings, Vol. 180 (1990) p. 473.

    Article  Google Scholar 

  15. R. Di Maggio, P. Scardi and A. Tomasi, ibid.“ Vol. 180 (1990) p. 481.

    Article  Google Scholar 

  16. A. R. Di Giampaolo Conde, M. Puerta, H. Ruiz, and J. Lira Olivares, J. Non-Cryst. Solids 147/148 (1992) 467.

    Article  Google Scholar 

  17. M. Guglielmi, D. Festa, P. C. Innocenti, P. Colombo and M. Gobbin, ibid. 147/148 (1992) 474.

    Article  Google Scholar 

  18. M. Atik and M. A. Aegerter, ibid. 147/148 (1992) 813.

    Article  Google Scholar 

  19. J. F. Quinson, C. Chino, A. M. de Becdelievre and C. Guizard, in “Better Ceramics Through Chemistry”, Materials Research Society Symposium Proceedings, Vol. 346 (1994) p. 703.

  20. B. E. Yoldas, J. Am. Ceram. Soc. 65 (1982) 387.

    Article  CAS  Google Scholar 

  21. Y. Arnaud, M. Brunel, A. M. De Becdelievre, M. Romand, P. Thevenard and M. Rubelet, Appl. Surf. Lett. 26 (1986) 12.

    Article  CAS  Google Scholar 

  22. H. E. Schaefer, R. Wûrschum, R. Birringer and H. Gleiter, J. Less-Common Metals 140 (1988) 161.

    Article  CAS  Google Scholar 

  23. H. Gleiter, Adv. Mater. 4 (1992) 474.

    Article  CAS  Google Scholar 

  24. R. W. Siegel, in “Materials Interfaces”, edited by D. Wolf and S. Yip (Chapman and Hall, London, 1992) p. 431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinson, J.F., Chino, C., De Becdelievre, A.M. et al. Deformation capability and protective role of zirconia coatings on stainless steel. JOURNAL OF MATERIALS SCIENCE 31, 5179–5184 (1996). https://doi.org/10.1007/BF00355922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355922

Keywords

Navigation