Skip to main content
Log in

Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Major-element and REE compositions of 14 diamondiferous eclogites from the Udachnaya kimberlite in Yakutia, Siberia have been determined by electron microprobe and secondary ion mass spectrometer (SIMS). Based on previous clinopyroxene classification schemes (e.g., Taylor and Neal 1989), all of these eclogite xenoliths belong to Group B/C, although some of the garnet compositions and mineral REE abundances are inconsistent with the indicated groups. This demonstrates the inadequacy of the classification scheme based on African eclogites for application to Siberian samples. Because of the coarse grain size of the Udachnaya nodules, meaningful modal abundances could not be obtained. However, reconstructed REE compositions using various garnet: clinopyroxene ratios demonstrate relative insensitivity to changes in mode for common eclogitic assemblages. Many of these reconstructed REE compositions show LREE depletions. Some depletions are consistent with an origin (either directly or through partial melting) as “normal” or Type-I ocean floor basalt. Others, however, require material of eclogitic or pyroxenitic affinities to undergo partial melting; this facilitates the depletion of LREE while leaving the HREE at nearly original levels. Many of the eclogites of South Africa are consistent with a protolith of “anomalous” or Type II ocean floor basalt. This fundamental difference between the two regions is the likely cause of the inconsistencies with the chemicallybased classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arculus RJ, Ferguson, J, Chappell BW, Smith D, McCulloch MT, Jackson I, Hensel HD, Taylor SR, Knutson J, Gust DA (1988) Trace element and isotopic characteristics of eclogites and other xenoliths derived from the lower continental crust of southeastern Australia and southewestern Colorado Plateau, USA. In: Smith DC (ed) Eclogites and eclogite-facies rocks. Elsevier, Amsterdam, pp 335–386

    Google Scholar 

  • Beard BL, Medaris LG, Johnson CM, Brueckner HK, Misar Z (1992) Petrogenesis of Variscan high-temperature Group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 111: 468–483

    Google Scholar 

  • Bobrievich AP, Smirnov GJ, Sobolev VS (1960) The mineralogy of xenoliths of a grossular-pyroxene-kyanite rock (grospydite) from the Yakutian Kimberlites (in Russian). Geol Geofiz 3: 18–24

    Google Scholar 

  • Bobrievich AP, Ilupin IP, Pankratov AA, Smirnov GI (1964) New data on the petrography and mineralogy of the kimberlites of Yakutia (in Russian). In: Basal'ty Plato (“Plateau basalts”). Nauka, Moscow, pp 88–102

    Google Scholar 

  • Bodinier JL, Dupuy C, Dostal J (1988) Geochemistry and petrogenesis of Eastern Pyrenean peridotites. Geochim Cosmochim Acta 52: 2893–2907

    Google Scholar 

  • Bodinier JL, Vassuer G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz Orogenic Peridotite. J Petrol 31: 597–628

    Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island Zabargad (St. John), Red Sea: petrology and geochemistry. J Geophys Res 91: 599–631

    Google Scholar 

  • Boyd FR (1984) Siberian geotherm based on Iherzolite xenoliths from the Udachnaya kimberlite, USSR. Geology 12: 528–530

    Google Scholar 

  • Boyd FR, Nixon PH (1973) Structure of the upper mantle beneath Lesotho. In: (ed) Carnegie Inst Washington Yearbook. pp 431–445

  • BVSP (1981) Basaltic volcanism on the terrestrial planets. Pergamon, New York

    Google Scholar 

  • Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites: their differences and similarities. Bull Geol Soc Am 76: 483–508

    Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51: 431–435

    Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 71: 13–22

    Google Scholar 

  • Finnerty AA, Boyd FR (1987) Thermobarometry for garnet peridotites: basis for the determination of thermal and compositional structure of the upper mantle. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 381–402

    Google Scholar 

  • Frey FA (1980) The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: trace element evidence. Am J Sci 280-A: 427–449

    Google Scholar 

  • Gasparik T Lindsley DH (1980) Phase equilibria at high pressure of pyroxenes containing monovalent and trivalent ions. In: Prewitt CH (ed) Pyroxenes. Mineralogical Society of America, Washington, D.C., pp 309–339

    Google Scholar 

  • Griffin WL, O Reilly SY, Stabel A (1988) Mantle metasomatism beneath western Victoria, Australia: II. Isotopic geochemistry of Cr-diopside lherzolites and Al-augite pyroxenites. Geochim Cosmochim Acta 52: 449–459

    Google Scholar 

  • Haggerty SE, Sautter V (1990) Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science 248: 993–996

    Google Scholar 

  • Hatton CJ (1978) The geochemistry and origin of xenoliths from the Roberts Victor mine. Ph.D Dissertation, University of Cape Town, South Africa

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci 280-A: 389–426

    Google Scholar 

  • Jagoutz E, Dawson JB, Hoernes S, Spettel B, Wänke H (1984) Anorthositic oceanic crust in the Archean Earth. Lunar Planet Sci XV: 395–396

    Google Scholar 

  • Lundberg LL, Crozaz G, McKay G, Zinner E (1988) Rare earth element carriers in the Shergotty meteorite and implications for its chronology. Geochim Cosmochim Acta 52: 2147–2163

    Google Scholar 

  • Lundberg LL, Crozaz G, McSween HYJ (1990) Rare earth elements in minerals of the ALHA 77005 shergottite and implications for its parent magma and crystallization history. Geochim Cosmochim Acta 54: 2535–2547

    Google Scholar 

  • MacGregor ID, Carter JL (1970) The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys Earth Planet Int 3: 391–397

    Google Scholar 

  • MacGregor ID, Manton WI (1986) The Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91: 14063–14079

    Google Scholar 

  • McKay GA (1986) Crystal/liquid partitioning of REE in basaltic systems: extreme fractionation of REE in olivine. Geochim Cosmochim Acta 50: 69–79

    Google Scholar 

  • McKay GA (1989) Partitioning of rare-earth elements between major silicate minerals and basaltic melts. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare-earth elements. Mineralogical Society of America, pp 45–77

  • McKay GA, Wagstaff J, Yang S-R (1986) Clinopyroxene REE distribution coefficients for shergottites: the REE content of the Shergotty melt. Geochim Cosmochim Acta 50: 927–937

    Google Scholar 

  • Mukhopadhyay B (1991) Garnet-clinopyroxene geobarometry: the problems, a prospect, and an approximate solution with some applications. Am Mineral 76: 512–529

    Google Scholar 

  • Nakamura N (1974) Determination of REE Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38: 757–775

    Google Scholar 

  • Neal CR, Taylor LA, Davidson JP, Holden P, Halliday AN, Nixon PH, Paces JB, Clayton RN, Mayeda TK (1990) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part 2: Sr, Nd, and O isotope geochemistry. Earth Planet Sci Lett 99: 362–379

    Google Scholar 

  • O'Reilly SY, Griffin WL (1988) Mantle metsomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52: 433–447

    Google Scholar 

  • Oxburgh ER, Turcotte DL (1970) Thermal structure of island arcs. Geol Soc Am Bull 81: 1665–1688

    Google Scholar 

  • Pearson DG, Davies GR, Nixon PH, Greenwood PB, Mattey DP (1991) Oxygen isotopic evidence for the origin of pyroxenites in the Beni Bousera peridotite massif, North Morocco: derivation from subducted oceanic lithosphere. Earth Planet Sci Lett 102: 289–301

    Google Scholar 

  • Pokhilenko NP, Sobolev NV, Yefimova ES (1982) Xenolith of deformed diamond-bearing kyanite eclogite from the Udachnaya pipe, Yakutia (in Russian). Dokl Akad Nauk SSSR 266: 212–216

    Google Scholar 

  • Ponomarenko AI, Sobolev NV, Pokhilenko NP, Laurent'yev YG, Sobolev VS (1976) Diamond-bearing grospydite and diamondbearing kyanite eclogites from the Udachnaya Kimberlite pipe, Yakutia (in Russian). Dokl Akad Nauk SSSR 226: 927–930

    Google Scholar 

  • Ponomarenko AI, Spetsius ZV, Sobolev NV (1980) New type of diamond-bearing rock-garnet pyroxenite (in Russian). Dokl Akad Nauk SSSR 251: 438–441

    Google Scholar 

  • Sautter V, Harte B (1988) Diffusion gradients in an eclogite xenolith from the Roberts Victor kimberlite pipe: 1. Mechanism and evolution of garnet exsolution in Al2O3-rich clinopyroxene. J Petrol 29: 1325–1352

    Google Scholar 

  • Shervais JW, Taylor LA, Lugmair GW, Clayton RN, Mayeda TK, Korotev RL (1988) Early Proterozoic oceanic crust and the evolution of subcontinental mantle: eclogites and related rocks from southern Africa. Bull Geol Soc Am 100: 411–423

    Google Scholar 

  • Shimizu N, Kushiro I (1975) The partitioning of rare earth elements between garnet and liquid at high pressures: preliminary experiments. Geophys Res Lett 2: 413–416

    Google Scholar 

  • Smyth JR, Caporuscio FA, McComick TC (1989) Mantle eclogites: evidence of igneous fractionation in the mantle. Earth Planet Sci Lett 93: 133–141

    Google Scholar 

  • Snyder GA, Jerde EA, Taylor LA, Halliday AN, Sobolev VN, Sobolev NV (1992) Nd and Sr isotopes from diamondiferous eclogites, Yakutia, Siberia: evidence for an old depleted mantle protolish. Trans Am Geophys Union 73: 656

    Google Scholar 

  • Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Sobolev NV, Nixon PH (1987) Xenoliths from the USSR and Mongolia: a selective and brief review. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 159–165

    Google Scholar 

  • Sobolev VS, Sobolev NV (1980) New proof of very deep subsidence of eclogitized crustal rocks (in Russian). Dokl Akad Nauk SSSR 250: 683–685

    Google Scholar 

  • Sobolev NV, Kuznetsova IK, Zyuzin NI (1968) The petrology of grospydite xenoliths from the Zagadochnaya kimberlite pipe in Yakutia. J Petrol 9: 253–280

    Google Scholar 

  • Sobolev NV, Bakumenko IT, Yefimova ES, Pokhilenko NP (1991a) Morphological features of microdiamonds, sodium in garnet, and potassium in clinopyroxenes, contents of two eclogite xenoliths from the Udachnaya Kimberlite pipe (Yakutia) (in Russian). Dokl Akad Nauk SSSR 321: 585–591

    Google Scholar 

  • Sobolev NV, Zuev VM, Bezborodov SM, Ponomarenko AI, Spetsius ZV, Kuligin S, Yefimova ES, Afanasiev VP, Koptil VI, Botkunov AI (1991b) Eclogite paragenesis of diamonds from Udachnaya and Mir pipes, Yakutia. 5th International Kimberlite Conference Ext Abstr CPRM Spec Publ 2/91: 391

    Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole rock chemistry. J Geol 97: 551–567

    Google Scholar 

  • Taylor LA, Eckert JO, Neal CR, Crozaz G (1991) Crustal signatures in mantle eclogites: REE patterns of clinopyroxene and garnet by SIMS and INAA. Proceedings 5th International Kimberlite Conference Ext Abstr 410–414

  • Toksöz MN, Minear JW, Julian BR (1971) Temperature field and geophysical effects of a downgoing slab. J Geophys Res 76: 1113–1138

    Google Scholar 

  • Weill DF, McKay GA (1975) The partitioning of Mg, Fe, Sr, Ce, Sm, Eu, and Yb in lunar igneous systems and a possible origin of KREEP by equilibrium partial melting. Proc Lunar Sci Conf, 6th 1143–1158

  • Wilshire HG, Jackson ED (1975) Problems in determining mantle geotherms from pyroxene compositions of ultramafic rocks. J Geol 83: 313–329

    Google Scholar 

  • Wilshire HG, Nielson Pike JE, Meyer CE, Schwarzman EC (1980) Amphibole-rich veins in lherzolite xenoliths, Dish Lake and Deadman Lake, California. Am J Sci 280-A: 576–593

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42: 109–124

    Google Scholar 

  • Zinner E, Crozaz G (1986) A method for the quantitative measurement of rare earth elements in the ion microprobe. Int Mass Spectrom Ion Process 69: 17–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerde, E.A., Taylor, L.A., Crozaz, G. et al. Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contr. Mineral. and Petrol. 114, 189–202 (1993). https://doi.org/10.1007/BF00307755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307755

Keywords

Navigation