Skip to main content
Log in

Production of kanamycin resistant rice tissues following DNA uptake into protoplasts

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Rice protoplasts (Oryza sativa L. v Taipei 309) have been transformed to kanamycin resistance following uptake of pCaMVNEO induced by electroporation, PEG and PEG combined with electroporation. Protoplast-derived colonies selected on medium containing 100 μg/ml of kanamycin expressed NPTII activity, and contained DNA that hybridised to a 1.0 Kb BamHI fragment of pCaMVNEO carrying the NPTII gene. Expression of the transformation frequency in relative terms (number of kanamycin resistant colonies compared to the number of colonies on kanamycin free medium) gave frequencies of 26.1%, 8.5% and 2.9% following electroporation, PEG and PEG with electroporation respectively. In absolute terms (number of kanamycin resistant colonies compared to the number of protoplasts plated) these represent frequencies of 19.9×10−5, 9.0×10−5 and 2.7×10−5 for the three procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah R, Cocking EC, Thompson JA (1986) Bio/Technology 4:1087–1090

    Google Scholar 

  • Abdullah R, Thompson, JA, Kush GS, Cocking EC (1988) Theor. Appl. Genet. (submitted)

  • Balázs E, Bouzoubaa S, Guilley H, Jonard G, Paszkowski J, Richards K (1985) Gene 40:343–348

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res. 7:1513–1523

    Google Scholar 

  • Chen WH, Gartland KMA, Davey MR, Sotak R, Gartland JS, Mulligan BJ, Power JB, Cocking EC (1987) Plant Cell Reports 6:297–301

    Google Scholar 

  • Davey MR, Cocking EC, Freeman JP, Pearce N, Tudor I (1980) Plant Sci. Lett. 18:307–313

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) Plant Mol. Biol. Reporter 1:19–21

    Google Scholar 

  • Frearson EM, Power JB, Cocking EC (1973) Devel. Biol. 35:130–137

    Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Nature 319:791–793

    Google Scholar 

  • Hain R, Stabel P, Czernilofsky AP, Steinbiss HH, Herrera-Estrella L, Schell J (1985) Mol. Gen. Genet. 199:161–168

    Google Scholar 

  • Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT (1987) Plant Cell Reports 6:265–270

    Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Plant Physiol. 86:602–606

    Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) Science 227:1229–1231

    Google Scholar 

  • Junker B, Zimny J, Luhrs R, Lőrz H (1987) Plant Cell Reports 6:329–332

    Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) Nature 296:72–74

    Google Scholar 

  • Kyozuka J, Hayashi Y, Shimamoto K (1987) Mol. Gen. Genet. 206:408–413

    Google Scholar 

  • Lőrz H, Baker B, Schell J (1985) Mol. Gen. Genet. 199:178–182

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Márton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) Nature 277:129–131

    Google Scholar 

  • Meyer P, Walgenbach E, Bussmann K, Hombrecher G, Saedler H (1985) Mol. Gen. Genet. 201:513–518

    Google Scholar 

  • Ou-Lee TM, Turgeon R, Wu R (1986) Proc. Natl. Acad. Sci. USA 83:6815–6819

    Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) EMBO J. 3:2717–2722

    Google Scholar 

  • Paszkowski J, Pisan B, Shillito RD, Hohn T, Hohn B, Potrykus I (1986) Plant Mol. Biol. 6:303–312

    Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985a) Mol. Gen. Genet. 199:183–188

    Google Scholar 

  • Potrykus I, Paszkowski J, Saul MW, Petruska J, Shillito RD (1985b) Mol. Gen. Genet. 199:169–177

    Google Scholar 

  • Rech EL, Ochatt SJ, Chand PK, Power JB, Davey MR (1987) Protoplasma 141:169–176

    Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Science 240:204–207

    Google Scholar 

  • Reiss B, Sprengel R, Will H, Schaller H (1984) Gene 30:211–218

    Google Scholar 

  • Schreier PH, Seftor EA, Schell J, Bohnert HJ (1985) EMBO J. 4:25–32

    Google Scholar 

  • Shillito RD, Saul MW, Paszkowski J, Muller M, Potrykus I (1985) Bio/Technology 3:1099–1103

    Google Scholar 

  • Southern E (1975) J. Mol. Biol. 98:503–517

    Google Scholar 

  • Thompson J, Abdullah R, Cocking EC (1986) Plant Sci. 47:123–133

    Google Scholar 

  • Thompson JA, Abdullah R, Chen WH, Gartland KMA (1987) J. Plant Physiol. 127:367–370

    Google Scholar 

  • Uchimiya H, Fushimi T, Hashimoto H, Harada H, Syono K, Sugawara Y (1986) Mol. Gen. Genet. 204:204–207

    Google Scholar 

  • Vasil IK (1987) J. Plant Physiol. 128:193–218

    Google Scholar 

  • Werr W, Lőrz H (1986) Mol. Gen. Genet. 202:471–475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by I. Potrykus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Zhang, H.M., Davey, M.R. et al. Production of kanamycin resistant rice tissues following DNA uptake into protoplasts. Plant Cell Reports 7, 421–425 (1988). https://doi.org/10.1007/BF00269528

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00269528

Keywords

Navigation