Skip to main content
Log in

Chloroplast tRNAAsp: nucleotide sequence and variation of in vivo levels during plastid maturation

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Two chloroplast tRNAAsp species from barley were purified by chromatography on benzoylated DEAE-cellulose and sequenced. They differ in the modification at position 34, where queuosine (Q) is present in one of the species. The same chromatographic procedure yielded only one tRNAGlu species, corroborating the assumption that the same tRNAGlu species participates in both protein and chlorophyll biosynthesis. The level of tRNAGlu remains unchanged after light treatment of etiolated seedlings, whereas the amount of tRNAAsp decreases to about 50% relative to the level of dark-grown plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avissar YJ, Beale SI: Biosynthesis of tetrapyrrole pigment precursors. Formation and utilization of glutamyl-tRNA for delta-aminolevulinic acid synthesis by isolated enzyme fractions from Chlorella vulgaris. Plant Physiol 88: 879–886 (1988).

    Google Scholar 

  2. Beier H, Barciszewska M, Krupp G, Mitnacht R, Gross HJ: UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAsTyr with suppressor activity from tobacco plants. EMBO J 3: 351–356 (1984).

    Google Scholar 

  3. Beier H, Barciszewska M, Sickinger HD: The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J 3: 1091–1096 (1984).

    Google Scholar 

  4. Beier H, Zech U, Zubrod E, Kersten H: Queuine in plants and plant tRNAs: Differences between embryonic tissue and mature leaves. Plant Mol Biol 8: 345–353 (1987).

    Google Scholar 

  5. Berkner KL, Folk WR: PNK exchange reaction. J Biol Chem 252: 3176–3184 (1977).

    Google Scholar 

  6. Berry-Lowe S: the chloroplast tRNA glutamate gene required for delta-aminolevulinate synthesis. Carlsberg Res Comm 52: 197–210 (1987).

    Google Scholar 

  7. Gillam I, Blew D, Warrington RC, von Tigerstrom M, Tener GM: A general procedure for the isolation of specific transfer ribonucleic acids. Biochemistry 7: 3459–3766 (1968).

    Google Scholar 

  8. Green GA, Jones DS: The nucleotide sequences of a cytoplasmic and a chloroplast tRNATyr from Scenedesmus obliquus. Nucl Acids Res 13: 1659–1663 (1985).

    Google Scholar 

  9. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Shinozaki K, Sugiura M: The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Gen 217: 185–194 (1989).

    Google Scholar 

  10. Holschuh K, Bottomley W, Whitfield PR: Sequence of the genes for tRNACys and tRNAAsp from spinach chloroplasts. Nucl Acids Res 11: 8547–8554 (1983).

    Google Scholar 

  11. Holschuh K, Bottomley W, Whitfield PR: Organization and nucleotide sequence of the genes for spinach chloroplast tRNAGlu and tRNATyr. Plant Mol Biol 3: 313–317 (1984).

    Google Scholar 

  12. Jayabaskaran C, Kuntz M, Guillemaut P, Weil J-H: Variations in the levels of chloroplast tRNAs and aminoacyl-tRNA synthetases in senescing leaves of Phaseolus vulgaris. Plant Physiol 92: 136–140 (1990).

    Google Scholar 

  13. Kannangara CG, Gough SP, Hansen B, Rasmussen JN, Simpson D: A homogenator with replaceable razor blades for bulk isolation of active barley plastids. Carlsberg Res Commun 42: 431–440 (1977).

    Google Scholar 

  14. Kannangara CG, Gough SP, Oliver PR, Rasmussen SK: Biosynthesis of delta-aminolevulinate in greening barley leaves VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49: 417–437 (1984).

    Google Scholar 

  15. Krupp G, Gross HJ: Sequence analysis of in vitro 32Plabelled RNA. In: Agris PF, Kopper RA (eds) The Modified Nucleotides of Transfer RNA II, pp. 11–59. Alan R. Liss, New York (1983).

    Google Scholar 

  16. Kuntz M, Weil JH, Steinmetz A: Nucleotide sequence of a 2 kbp BamHI fragment of Vicia faba chloroplast DNA containing the genes for threonine, glutamic acid and tyrosine transfer RNAs. Nucl Acids Res 12: 5037–5047 (1984).

    Google Scholar 

  17. Marechal L, Guillemaut P, Weil JH: Sequences of two bean mitochondrial tRNAsTyr which differ in the level of post-transcriptional modification and have a prokaryotic-like large extra loop. Plant Mol Biol 5: 347–351 (1985).

    Google Scholar 

  18. Mayer SM, Beale SI: Light regulation of delta-aminolevulinic acid biosynthetic enzymes and tRNA in Euglena gracilis. Plant Physiol 94: 1365–1375 (1990).

    Google Scholar 

  19. Mayer SM, Beale SI, Weinstein JD: Enzymatic conversion of glutamate to delta-aminolevulinic acid in soluble extracts of Euglena gracilis. J Biol Chem 262: 12541–12549 (1987).

    Google Scholar 

  20. Nishimura S, Kuchino Y: Characterization of modified nucleotides in tRNA. In: Weisman S (ed) Methods of DNA and RNA Sequencing, pp. 235–255. Praeger, New York (1983).

    Google Scholar 

  21. O'Neill GP, Peterson DM, Schön A, Chen M-W, Söll D: Formation of the chlorophyll precursor delta-aminolevulinic acid in Cyanobacteria requires aminoacylation of a tRNAGlu species. J Bact 170: 3810–3816 (1988).

    Google Scholar 

  22. O'Neill GP, Söll D: Expression of the Synechocystis sp. strain PCC 6803 tRNAGlu gene provides tRNA for protein and chlorophyll biosynthesis. J Bact 172: 6363–6371 (1990).

    Google Scholar 

  23. Ohme M, Kamogashira T, Shinozaki K, Sugiura M: Structure and contranscription of tobacco chloroplast genes for tRNAGlu (UCC), tRNATyr (GUA) and tRNAAsp (GUC). Nucl Acids Res 13: 1045–1056 (1985).

    Google Scholar 

  24. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Tekeuchi M, Chang Z, Aota SI, Inokuchi H, Ozeki H: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574 (1986).

    Google Scholar 

  25. Pfitzinger H, Guillemaut P, Weil JH, Pillay DTN: Adjustment of the tRNA population to the codon usage in chloroplasts. Nucl Acids Res 15: 1377–1386 (1987).

    Google Scholar 

  26. Pfitzinger H, Marechal-Drouard L, Pillay DTN, Weil JH, Guillemaut P: Variations during leaf development of the relative amounts of two bean (Phaseolus vulgaris) chloroplast tRNAsPhe which differ in their minor nucleotide content. Plant Mol Biol 14: 969–975 (1990).

    Google Scholar 

  27. Quigley F, Grienenberger JM, Weil JH: Localization and nucleotide sequences of the tRNAGlyGCC, tRNAAspGUC and tRNACysGCA genes from wheat chloroplast. Plant Mol Biol 4: 305–310 (1985).

    Google Scholar 

  28. Quigley F, Weil JH: Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangements during the evolution of chloroplast genomes. Curr Genet 9: 495–503 (1985).

    Google Scholar 

  29. Rasmussen OF, Stumman BM, Henningsen KW: Nucleotide sequence of a 1.1 kb fragment of the pea chloroplast genome containing three tRNA genes, one of which is located within an open reading frame of 91 codons. Nucl Acids Res 12: 9143–9153 (1984).

    Google Scholar 

  30. Schön A, Kannangara CG, Gough S, Söll D: Protein biosynthesis in organelles requires misaminocylation of transfer RNA. Nature 331: 187–190 (1988).

    Google Scholar 

  31. Schön A, Krupp G, Gough S, Berry-Lowe S, Kannagara CG, Söll D: The RNA required in the first step of chlorophyll synthesis is a chloroplast glutamate tRNA. Nature 322: 281–284 (1986).

    Google Scholar 

  32. Schön A, Krupp G, Gough S, Kannangara CG, Söll D: A new role for transfer RNA: a chloroplast tRNA is a cofactor in the conversion of glutamate to delta-aminolevulinic acid. In: Inouye M, Dudock BS (eds) Molecular Biology of RNA: New Perspectives, pp. 295–303. Academic Press, Orlando, FL (1987).

    Google Scholar 

  33. Schön A, O'Neill GP, Peterson DM, Söll D: Glutamyl-tRNAs from chloroplasts as cofactors in non-ribosomal enzymatic reactions. In: Molecular Biology of RNA, pp. 271–278. Alan R. Liss, New York (1989).

    Google Scholar 

  34. Schön A, Söll D: Transfer RNA specificity of a mischarging aminoacyl tRNA synthetase: Glutamyl tRNA synthetase from barley-chloroplasts. FEBS Lett 228: 241–244 (1988).

    Google Scholar 

  35. Sekiya T, Mori M, Takahashi M, Nishimura S: Sequence of the distal tRNAAsp gene and the transcription termination signal in the E. coli ribosomal RNA operon rrnF. Nucl Acids Res 8: 3809–3827 (1980).

    Google Scholar 

  36. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chungwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torozawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049 (1986).

    Google Scholar 

  37. Waldron C, Wills N, Gesteland R: Plant tRNA genes: Putative soybean genes for tRNAAsp and tRNAMet. J Mol Appl Gen 3: 7–17 (1985).

    Google Scholar 

  38. Weinstein JD, Mayer SM, Beale SI: RNA is required for enzymatic conversion of glutamate to δ-aminolevulinic acid by algal extracts. In: Akoyunoglou G, Senger H (eds) Regulation of chloroplast differentiation, pp. 43–48. Alan R. Liss, New York (1986).

    Google Scholar 

  39. Weinstein JD, Mayer SM, Beale SI: Formation of delta-aminolevulinic acid from glutamic acid in algal extracts. Separation into an RNA and three required enzyme components by serial affinity chromatography. Plant Physiol 84: 245–250 (1987).

    Google Scholar 

  40. Yamada Y, Ohki M, Ishikura H: The nucleotide sequence of Bacillus subtilis tRNA genes. Nucl Acids Res 11: 3037–3045 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, A., Gough, S. & Söll, D. Chloroplast tRNAAsp: nucleotide sequence and variation of in vivo levels during plastid maturation. Plant Mol Biol 20, 601–607 (1992). https://doi.org/10.1007/BF00046445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046445

Key words

Navigation