Skip to main content

MultiSPAS: Multi-Descriptor Physical Approaches to Computerized Plant Ecology

  • Conference paper
  • First Online:
Robotics, Machinery and Engineering Technology for Precision Agriculture

Abstract

It is proposed to combine “computational and mathematical” and “monitoring” approaches to kinetic physico-chemical systematics based on the correlations between the environmental conditions and the plant response in real-time. Combining a real experiment and a mathematical model provides higher accuracy, heuristic value, and data integration (for data mining and descriptor-based representation based on combination of cheminformatics and/or chemometrics and bioinformatics/biometrics). Development of this method involves using as many variables as required for representing the environmental parameters and the set of factors affecting the biome. Hence, it is not limited to the aquatic or atmospheric environment as in the case of MultiSPAS approaches or their analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glor, R.E.: Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 41, 251–270 (2010)

    Article  Google Scholar 

  2. Butler, M.A., King, A.A.: Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164(6), 683–695 (2004)

    Article  Google Scholar 

  3. Agrawal, A.A., Fishbein, M., Halitschke, R., Hastings, A.P., Rabosky, D.L., Rasmann, S.: Evidence for adaptive radiation from a phylogenetic study of plant defenses. PNAS 106(43), 18067–18072 (2009)

    Article  Google Scholar 

  4. Sanderson, M.J., Donoghue, M.J.: Reconstructing shifts in diversification rates on phylogenetic trees. Trends Ecol. Evol. 11(1), 15–20 (1996)

    Google Scholar 

  5. Rundell, R.J., Price, T.D.: Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24(7), 394–399 (2009)

    Article  Google Scholar 

  6. Baum, D.A., Larson, A.: Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Systemat. Biol. 40(1), 1–18 (1991)

    Article  Google Scholar 

  7. Losos, J.B., Glor, R.E.: Phylogenetic comparative methods and the geography of speciation. Trends Ecol. Evol. 18(5), 220–227 (2003)

    Article  Google Scholar 

  8. Losos, J.B.: Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175(6), 623–639 (2010)

    Article  Google Scholar 

  9. Bock, W.J.: Functional-adaptive analysis in evolutionary classification. Am. Zool. 21(1), 5–20 (1981)

    Article  Google Scholar 

  10. Blomberg, S.P., Garland, T.: Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15(6), 899–910 (2002)

    Article  Google Scholar 

  11. Wink, M.: Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64(1), 3–19 (2003)

    Article  Google Scholar 

  12. Agajanian N.A., Makarova I.I.: Environment and the organism reactivity. Tver, Family, p. 186 (2001)

    Google Scholar 

  13. Belghitia, H., Brette, S., Lafitte, S., Reant, P., Picard, F., Serri, K., Lafitte, M., Courregelongue, M., Dos Santos, P., Douard, H., Roudaut, R., DeMaria, A.: Automated function imaging: a new operator-independent strain method for assessing left ventricular function. Arch. Cardiovasc. Dis. 101(3), 163–169 (2008)

    Article  Google Scholar 

  14. Sorensen, T.S., Korperich, H., Greil, G.F., Eichhorn, J., Barth, P., Meyer, H., Pedersen, E.M., Beerbaum, P.: Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110(2), 163–169 (2004)

    Article  Google Scholar 

  15. Kahraman, D., Eggers, C., Holstein, A., Schneider, C., Pedrosa, D.J., Dietlein, M., Kobe, C., Timmermann, L., Schmidt, M.: 123I-FP-CIT SPECT imaging of the dopaminergic state. Visual assessment of dopaminergic degeneration patterns reflects quantitative 2D operator-dependent and 3D operator-independent techniques. Nuklearmedizin 51(6), 244–251 (2012)

    Google Scholar 

  16. Ariani, A., Silva, M., Bravi, E., Saracco, M., Parisi, S., De Gennaro, F., Lumetti, F., Idolazzi, L., Seletti, V., Caramaschi, P., Benini, C., Bodini, F.C., Scirè, C.A., Lucchini, G., Santilli, D., Mozzani, F., Imberti, D., Arrigoni, E., Delsante, G., Pellerito, R., Fusaro, E., Sverzellati, N.: Operator-independent quantitative chest computed tomography versus standard assessment of interstitial lung disease related to systemic sclerosis: a multi-centric study. Mod. Rheumatol. 25(5), 724–730 (2015)

    Article  Google Scholar 

  17. Suckling, J., Sigmundsson, T., Greenwood, K., Bullmore, E.T.: A modified fuzzy clustering algorithm for operator independent brain tissue classification of dual echo MR images. Magn. Reson. Imag. 17(7), 1065–1076 (1999)

    Article  Google Scholar 

  18. Wallace, W.E., Kearsley, A.J., Guttman, C.M.: An operator-independent approach to mass spectral peak identification and integration. Anal. Chem. 76(9), 2446–2452 (2004)

    Article  Google Scholar 

  19. Di Stefano, D.A., Arosio, P., Piattelli, A., Perrotti, V., Iezzi, G.: A torque-measuring micromotor provides operator independent measurements marking four different density areas in maxillae. J. Adv. Prosthodont. 7(1), 51–55 (2015)

    Article  Google Scholar 

  20. Stillman, J., Somero, G.: Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. J. Exp. Biol. 199(8), 1845–1855 (1996)

    Article  Google Scholar 

  21. Karadimitriou, M.E., Kavousanaki, E.G., Dani, K.M., Fromer, N.A., Perakis, I.E.: Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy. J. Phys. Chem. B. 115(18), 5634–5647 (2011)

    Article  Google Scholar 

  22. Becker, W., Bergmann, A., Haustein, E., Petrasek, Z., Schwille, P., Biskup, C., Kelbauskas, L., Benndorf, K., Klocker, N., Anhut, T., Riemann, I., Konig, K.: Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting. Microsc. Res. Tech. 69(3), 186–195 (2006)

    Article  Google Scholar 

  23. Mukamel, S.: Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Ann. Rev. Phys. Chem. 51, 691–729 (2000)

    Article  Google Scholar 

  24. Wada, A., Tachibana, H., Hayashi, H., Saito, Y.: Multidimensional spectroscopic data correlation in the conformation transition of biological macromolecules. J. Biochem. Biophys. Meth. 2(5), 257–269 (1980)

    Article  Google Scholar 

  25. Gopinath, T., Traaseth, N.J., Mote, K., Veglia, G.: Sensitivity enhanced heteronuclear correlation spectroscopy in multidimensional solid-state NMR of oriented systems via chemical shift coherences. J. Am. Chem. Soc. 132(15), 5357–5363 (2010)

    Article  Google Scholar 

  26. Caldarelli, S., Emsley, L.: Intrinsic asymmetry in multidimensional solid-state NMR correlation spectra. J. Magnet. Reson. 130(2), 233–237 (1998)

    Article  Google Scholar 

  27. Ramamoorthy, A., Wu, C.H., Opella, S.J.L: Experimental aspects of multidimensional solid-state NMR correlation spectroscopy. J. Magnet. Reson. 140(1), 131–140 (1999)

    Google Scholar 

  28. Schmidt-Rohr, K., Spiess, H.W.: Nature of non-exponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys. Rev. Lett. 66(23), 3020–3023 (1991)

    Article  Google Scholar 

  29. Giraud, N., Pitoux, D., Ouvrard, J.M., Merlet, D.: Combining J-edited and correlation spectroscopies within a multi-dimensional spatial frequency encoding: toward fully resolved 1H NMR spectra. Chemistry 19(37), 12221–12224 (2013)

    Article  Google Scholar 

  30. Marigheto, N., Venturi, L., Hibberd, D., Wright, K.M., Ferrante, G., Hills, B.P.: Methods for peak assignment in low-resolution multidimensional NMR cross-correlation relaxometry. J. Magnet. Reson. 187(2), 327–342 (2007)

    Article  Google Scholar 

  31. Venturi, L., Hills, B.: Spatially resolved multidimensional cross-correlation relaxometry. Magn. Reson. Imag. 28(2), 171–177 (2010)

    Article  Google Scholar 

  32. Schweigert, I.V., Mukamel, S.: Coherent ultrafast core-hole correlation spectroscopy: X-ray analogues of multidimensional NMR. Phys. Rev. Lett. 99(16), 163001-1–163001-4 (2007)

    Google Scholar 

  33. Stuart, L., Walter, M., Borisyuk, R.: The correlation grid: analysis of synchronous spiking in multi-dimensional spike train data and identification of feasible connection architectures. Biosystems 79(1–3), 223–233 (2005)

    Article  Google Scholar 

  34. Uloza, V., Vegienė, A., Saferis, V.: Correlation between the basic video laryngostroboscopic parameters and multidimensional voice measurements. J. Voice 27(6), 744–752 (2013)

    Article  Google Scholar 

  35. Wang, W.C., Yao, G., Tsai, Y.J., Wang, J.D., Hsieh, C.L.: Validating, improving reliability, and estimating correlation of the four subscales in the WHOQOL-BREF using multidimensional Rasch analysis. Qual. Life Res. 15(4), 607–620 (2006)

    Article  Google Scholar 

  36. Baker, F.D.: Parameter sensitivity in plant process models. Am. Soc. Agric. Eng. 1417, 824570 (1982). Winter meeting, Chicago

    Google Scholar 

  37. Venkataraman, R.: Studies on thermo-photo-sensitivity of the paddy plant under field conditions. Proc. Plant Sci. 59(3), 117–136 (1964)

    Google Scholar 

  38. Zames, G.: Feedback, optimal sensitivity, and plant uncertainty via multiplicative seminorms. IFAC Proc. Vol. 14(2), 1171–1175 (1981)

    Article  MathSciNet  Google Scholar 

  39. Sun, L., Ji, S., Ye, J.: Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis. IEEE Trans. Pattern. Anal. Mach. Intel. 33(1), 194–200 (2011)

    Article  Google Scholar 

  40. Hsu, F. C., Kleier, D.A.: Phloem mobility of xenobiotics. III. Sensitivity of unified model to plant parameters and application to patented chemical hybridizing agents. Weed Sci. 315–323 (1990)

    Google Scholar 

  41. Deng, S., Gou, S., Sun, B., Lv, W., Li, Y., Peng, H., Xiao, H., Yang, G., Wang, Y.: Modeled dosage–response relationship on the net photosynthetic rate for the sensitivity to acid rain of 21 plant species. Bull. Environ. Contam. Toxicol. 89(2), 251–256 (2012)

    Article  Google Scholar 

  42. Suffling, R., Smith, D.W., Stevens, D., Dai, T.S.: Plant community age as an index of sensitivity to environmental damage. Am. Journ. Bot. 61(5), 65–65 (1974)

    Google Scholar 

  43. Shuhua, L.I.U., Xu, Y.U.E., Huizhi, L.I.U., Fei, H.U.: Using a modified soil-plant-atmosphere scheme (MSPAS) to study the sensitivity of land surface and boundary layer processes to soil and vegetation conditions. Adv. Atmos. Sci. 21(5), 717–729 (2004)

    Article  Google Scholar 

  44. Zeppel, M., Macinnis-Ng, C., Palmer, A., Taylor, D., Whitley, R., Fuentes, S., Yunusa, I., Williams, M., Eamus, D.: An analysis of the sensitivity of sap flux to soil and plant variables assessed for an Australian woodland using a soil-plant-atmosphere model. Func. Plant Biol. 35(6), 509–520 (2008)

    Article  Google Scholar 

  45. Violle, C., Choler, P., Borgy, B., Garnier, E., Amiaud, B., Debarros, G., Diquelou, S., Gachet, S., Jolivet, C., Kattge, J., Lavorel, S., Lemauviel-Lavenant, S., Loranger, J., Mikolajczak, A., Munoz, F., Olivier, J., Viovy, N.: Vegetation ecology meets ecosystem science: permanent grasslands as a functional biogeography case study. Sci. Tot. Environ. 534, 43–51 (2015)

    Article  Google Scholar 

  46. Benson, E.S.: Trackable life: data, sequence, and organism in movement ecology. Stud. Hist. Phil. Biol. Biom. Sci. 57, 137–147 (2016)

    Article  Google Scholar 

  47. Zalud, P., Krekule, I.: Universal preprocessing CAMAC modules. Physiol. Bohem. 29(2), 181–184 (1980)

    Google Scholar 

  48. Lim, J.T., Gold, H.J., Wilkerson, G.G., Raper, C.D.: A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth. Appl. Math. Model. 13(8), 479–484 (1989)

    Article  Google Scholar 

  49. Samecka-Cymerman, A., Stankiewicz, A., Kolon, K., Kempers, A.J., Leuven, R.S.: Market basket analysis: a new tool in ecology to describe chemical relations in the environment—a case study of the fern Athyrium distentifolium in the Tatra National Park in Poland. J. Chem. Ecol. 36(9), 1029–1034 (2010)

    Article  Google Scholar 

  50. Li, C., Riethoven, J.J., Naylor, G.J.: EvolMarkers: a database for mining exon and intron markers for evolution, ecology and conservation studies. Mol. Ecol. Resour. 12(5), 967–971 (2012)

    Article  Google Scholar 

  51. Heinrich, M.P., Papiez, B.W., Schnabel, J.A., Handels, H.: Multispectral image registration based on local canonical correlation analysis. Med. Imag. Comp. Comput. Assist. Interv. 17(1), 202–209 (2014)

    Google Scholar 

  52. Submolecular biology and cancer. CIBA FOUNDATION SYMPOSIUM 67 (new series) in honour of Albert Szent-Györgyi on the occasion of his 85th birthday. CIBA FOUND. SYMP. 67, 1–349 (1978)

    Google Scholar 

  53. Trewavas, A.J.: Growth substance sensitivity: the limiting factor in plant development. Physiol. Plant. 55(1), 60–72 (1982)

    Article  Google Scholar 

  54. Piccolo, A.: Reactivity of added humic substances towards plant available heavy metals in soils. Sci. Total Environ. 81, 607–614 (1989)

    Article  Google Scholar 

  55. Violante, A., Gianfreda, L.: Role of biomolecules in the formation of variable-charge minerals and organo-mineral complexes and their reactivity with plant nutrients and organics in soil. Soil Biochem. 10, 207–270 (2000)

    Google Scholar 

  56. Wojtasik, M.: Sensitivity of three cultivated plant species to the density of soils. Zeszyty Problemowe Postepow Nauk Rolniczych 507, 575–580 (2005)

    Google Scholar 

  57. Nissen, P.: Dose responses of plant growth substances: sensitivity and kinetics. Plant Physiol. 72, 117 (1983)

    Google Scholar 

  58. Hyder, S.Z., Greenway, H.: Effects of Ca on plant sensitivity to high NaCl concentrations. Plant Soil 258–260 (1965)

    Google Scholar 

  59. Gorlach, E., Gambus, F.: A comparison of sensitivity to the toxic action of heavy metals in various plant species. Polish J. Soil Sci. 25(2), 207–213 (1992)

    Google Scholar 

  60. Ganev, S., Kalichkova, T.: About the problem of cation exchange mechanisms of plant acidic sensitivity and tolerance. Plant Physiol. 18(4), 21–30 (1992)

    Google Scholar 

  61. Orehov, T.C., Gradov, O.V.: Hybridization of COBAC, QSPR/QSAR and SBGN technologies: the unity of theory and practice for biomedical technique design and biochemical diagnostic information analysis. J. Med. Bioeng. 5(2), 128–132 (2016)

    Google Scholar 

  62. Orehov, F.C., Gradov, O.V.: In situ real time analysis in frame of COBAC, QSPR, QSAR and SBGN as a novel tool for the biosimilarity studies and physio-chemical prognostics in the biomedicine-assisted screening and experimental toxicology and allergology. J. Bioanal. Biomed. 7(5), 95 (2015)

    Google Scholar 

  63. Li, Y.F., Chen, C., Qu, Y., Gao, Y., Li, B., Zhao, Y., Chai, Z.: Metallomics, elementomics and analytical techniques. Pure Appl. Chem. 80(12), 2577–2594 (2008)

    Article  Google Scholar 

  64. Haferburg, G., Kothe, E.: Metallomics: lessons for metalliferous soil remediation. Appl. Microbiol. Biotechnol. 87(4), 1271–1280 (2010)

    Article  Google Scholar 

  65. Gall, N.R., Fomina, N.S., Bazhenov, A.N., Masyukevich, S.V., Kretinina, A.V., Gall, L.N.: ERIAD mass spectrometry (electrospray with controlled fragmentation) is the common method for metallomics and biochemistry of elementoorganic molecules. Biophysics 56(5), 883–891 (2011)

    Article  Google Scholar 

  66. Salt, D.E.: Plant metallomics. Metallomics 5(9), 1088–1089 (2013)

    Article  Google Scholar 

  67. Basu, P.: Microbial metallomics. Metallomics. 5(4), 274–275 (2013)

    Google Scholar 

  68. Mondal, R., Mukherjee, N.: Sensitivity of two plant pathogenic bacteria to some inorganic and organic compounds. J. Phytopathol. 83(1), 87–90 (1975)

    Article  Google Scholar 

  69. Palm, V.: A model for sorption, flux and plant uptake of cadmium in a soil profile: model structure and sensitivity analysis. Water Air Soil Pollut. 77(1–2), 169–190 (1994)

    Article  Google Scholar 

  70. Smith, G., Brennan, E.: Cadmium sensitivity related to ability of soybean plant to utilize iron efficiently. Phytopathology 72(2), 266–266 (1982)

    Google Scholar 

  71. Han, J.S., Davey, D.E., Mulcahy, D.E., Yu, F.D.: Effect of the pH value of the precipitation solution on the CO sensitivity of α-Fe2O3. Sens. Actuators B Chem. 61(1), 83–91 (1999)

    Article  Google Scholar 

  72. Bruska, M.K., Stiebritz, M.T., Reiher, M.: Analysis of differences in oxygen sensitivity of Fe–S clusters. Dalton Trans. 42(24), 8729–8735 (2013)

    Article  Google Scholar 

  73. Sun, H.T., Cantalini, C., Faccio, M., Pelino, M.: NO2 gas sensitivity of sol-gel-derived α-Fe2O3 thin films. Thin Solid Films 269(1), 97–101 (1995)

    Article  Google Scholar 

  74. Han, J.S., Yu, A.B., He, F.J., Yao, T.: A study of the gas sensitivity of α-Fe2O3 sensors to CO and CH4. J. Mater. Sci. Lett. 15(5), 434–436 (1996)

    Article  Google Scholar 

  75. Solti, Á., Gáspár, L., Vági, P., Záray, G., Fodor, F., Sárvári, E.: Cd, Fe, and light sensitivity: interrelationships in Cd-treated Populus. Omics J. Integr. Biol. 15(11), 811–818 (2011)

    Google Scholar 

  76. Yang, Y., Chen, R., Fu, G., Xiong, J., Tao, L.: Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa). Acta Physiol. Plant. 38(1), 28–28 (2016)

    Article  Google Scholar 

  77. Robin, A., Vansuyt, G., Corberand, T., Briat, J.F., Lemanceau, P.: The soil type affects both the differential accumulation of iron between wild-type and ferritin over-expressor tobacco plants and the sensitivity of their rhizosphere bacterioflora to iron stress. Plant Soil 283(1–2), 73–81 (2006)

    Article  Google Scholar 

  78. Wang, C.C., Newton, A.: Iron transport in Escherichia coli: relationship between chromium sensitivity and high iron requirement in mutants of Escherichia coli. J. Bacteriol. 98(3), 1135–1141 (1969)

    Article  Google Scholar 

  79. Gradov, O.V.: Editorial-Isotope channelomics of chemoautotrophs as the predictor and regulator of the metal deposit formation and the weathering factor. Mod Approaches Oceanogr. Petrochem. Sci. 1, 3 (2018)

    Google Scholar 

  80. Becker, D., Dreyer, I., Hoth, S., Reid, J.D., Bush, H., Lehnen, M., Palme, K., Hedrich, R.: Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1. PNAS 93(15), 8123–8128 (1996)

    Article  Google Scholar 

  81. Blackford, S., Rea, P.A., Sanders, D.: Voltage sensitivity of H+/Ca2+ antiport in higher plant tonoplast suggests a role in vacuolar calcium accumulation. J. Biol. Chem. 265(17), 9617–9620 (1990)

    Article  Google Scholar 

  82. Kashiba, M., Kajimura, M., Goda, N., Suematsu, M.: From O2 to H2S: a landscape view of gas biology. Keio J. Med. 51(1), 1–10 (2002)

    Article  Google Scholar 

  83. Suematsu, M.: Gas biology: how do the gases conduct protein function in vivo? J. Jpn. Biochem. Soc. 74(11), 1317–1328 (2002) [in Japanese]

    Google Scholar 

  84. Suematsu, M.: Quartet signal transducers in gas biology. Antioxid. Redox Sig. 5(4), 435–437 (2003)

    Article  Google Scholar 

  85. Kajimura, M., Fukuda, R., Bateman, R.M., Yamamoto, T., Suematsu, M.: Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid. Redox Sig. 13(2), 157–192 (2010)

    Article  Google Scholar 

  86. Nakao, A., Toyoda, Y.: Book review: gas biology research in clinical practice, edited by Toshikazu Yoshikawa and Yuji Naito. Med. Gas Res. 1, 1 (2011)

    Article  Google Scholar 

  87. Kajimura, M., Nakanishi, T., Takenouchi, T., Morikawa, T., Hishiki, T., Yukutake, Y., Suematsu, M.: Gas biology: tiny molecules controlling metabolic systems. Respir. Physiol. Neurobiol. 184(2), 139–148 (2012)

    Article  Google Scholar 

  88. Chang, C., Bleecker, A.B.: Ethylene biology. More than a gas. Plant Physiol. 136(2), 2895–2899 (2004)

    Article  Google Scholar 

  89. Kunz, T.H., Gauthreaux, S.A., Hristov, N.I., Horn, J.W., Jones, G., Kalko, E.K., Larkin, R.P., McCracken, G.F., Swartz, S.M., Srygley, R.B., Dudley, R., Westbrook, J.K., Wikelski, M.: Aeroecology: probing and modeling the aerosphere. Integr. Comput. Biol. 48(1), 1–11 (2008)

    Article  Google Scholar 

  90. Hristov, N.I., Betke, M., Kunz, T.H.: Applications of thermal infrared imaging for research in aeroecology. Integr. Comput. Biol. 48(1), 50–59 (2008)

    Article  Google Scholar 

  91. Swartz, S.M., Breuer, K.S., Willis, D.J.: Aeromechanics in aeroecology: flight biology in the aerosphere. Integr. Comput. Biol. 48(1), 85–98 (2008)

    Article  Google Scholar 

  92. Stakman, E.C., Christensen, C.M.: Aerobiology in relation to plant disease. Bot. Rev. 12(4), 205–253 (1946)

    Article  Google Scholar 

  93. Ponti, I., Cavanni, P.: Aerobiology in plant protection. Aerobiologia 8(1), 94–101 (1992)

    Article  Google Scholar 

  94. Fitt, B.D.L.: Aerobiology and plant pathology. Gewasbescherming 28, 48–48 (1997)

    Google Scholar 

  95. Rundquist, B.C., Harrington, J.J.A., Goodin, D.G.: Mesoscale satellite bioclimatology. Prof. Geogr. 52(2), 331–344 (2000)

    Article  Google Scholar 

  96. Biel, E.R.: Microclimate, bioclimatology, and notes on comparative dynamic climatology. Am. Sci. 49(3), 326–357 (1961)

    Google Scholar 

  97. Valencia-Barrera, R.M., Comtois, P., Fernández-González, D.: Biogeography and bioclimatology in pollen forecasting. Grana 40(4–5), 223–229 (2001)

    Article  Google Scholar 

  98. Mandrioli, P.: Biometeorology and its relation to pollen count. Adv. Aerobiol. (Birkhäuser, Basel) 37–41 (1987)

    Google Scholar 

  99. Wellington, W.G.: Biometeorology of dispersal. Bull. Entomol. Soc. Am. 29(3), 24–30 (1983)

    Google Scholar 

  100. Schein, R.D.: Biometeorology and plant disease. AIBS Bull. 34–37 (1963)

    Google Scholar 

  101. Schein, R.D.: Biometeorology in plant disease forecasting. Bull. Am. Meteorol. Soc. 43(11), 628 (1962)

    Google Scholar 

  102. Gradov, O.V.: A novel tool for monitoring of forest plant growth and development stages. In: Complexation of Spectroscopy, Gas Chromatography and Direct Mass Spectrometry. GRIN Verlag [GRIN Publishing GmbH], München (2018). ISBN 9783668874909; ISBN 9783668874916

    Google Scholar 

  103. Gradov, O.V.: [Chromatographic auxanometry and GC-MS-auxanometry in forest plant species vegetation phenological monitoring based on flavor and gas chemistry principles with automatic pattern recognition (climatic, meteorological, taxonomic and phenospectral)]. Optim. Prot. Ecosyst. 10(29), 30–45 (2014) [in Ukrainian]

    Google Scholar 

  104. Grädow, O.: Novel “phenospectral auxanometry” using complexation of optical spectroscopy and chromatographic auxanometry or GC-MS-auxanometry in forest plant species vegetation phenological monitoring based on gas & flavor chemistry principles. Int. J. Green Herb. Chem. Section A Green Chem. 3(2), 555–579 (2014)

    Google Scholar 

  105. Gradov, O.V.: Multiparametric multivariate patch-clamp-spectroscopy as a method for plant signaling characterization and complementary systematic descriptor for biochemical taxonomy and biogeographic biochemical plant signaling mapping based on correlational phenospectal auxanometry. In: Signal Systems of Plants, pp. 79–81. Saint Petersburg State University, SPbU Press (2016)

    Google Scholar 

  106. Tout, D.G.: Biometeorology. Prog. Phys. Geogr. 11(4), 473–486 (1987)

    Article  Google Scholar 

  107. Gosling, S.N., Bryce, E.K., Dixon, P.G., Gabriel, K.M.A., Gosling, E.Y., Hanes, J.M., Hondula, D.M., Liang, L., Mac-Lean, P.A.B., Muthers, S., Nascimento, S.T., Petralli, M., Vanos, J.K., Wanka, E.R.: A glossary for biometeorology. Int. J. Biometeorol. 58(2), 277–308 (2014)

    Google Scholar 

  108. Galimov, E.M. (ed.) The Biological Fractionation of Isotopes. Academic Press (1985). ISBN 9780122739705

    Google Scholar 

  109. Liu, H., Tian, Z.: Analysis of plant development stage based on the photoperiod-sensitivity of rice and ramie. Life Sci. Res. 9(1), 60–62 (2004)

    Google Scholar 

  110. Mancinelli, A.L.: Spectral sensitivity of the high irradiance responses of plant photomorphogenesis. Plant Physiol. 63(5), 155–155 (1979)

    Google Scholar 

  111. Borchert, R., Renner, S.S., Calle, Z., Navarrete, D., Tye, A., Gautier, L., Spichiger, R., von Hildebrand, P.: Photoperiodic induction of synchronous flowering near the Equator. Nature 433(7026), 627–629 (2005)

    Article  Google Scholar 

  112. Evans, L.T.: Inflorescence initiation in Lolium temulentum L. I. Effect of plant age and leaf area on sensitivity to photoperiodic induction. Aus. J. Biol. Sci. 13(2), 123–131 (1960)

    Google Scholar 

  113. Quastler, H., Baer, M.: Inhibition of plant growth by irradiation. II. Development and sensitivity. J. Cell Comp. Physiol. 33, 349–364 (1949)

    Google Scholar 

  114. Robberecht, R., Caldwell, M.M.: Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ulraviolet-radiation induced injury. Oecologia 32(3), 277–287 (1978)

    Article  Google Scholar 

  115. Mirecki, R.M., Teramura, A.H.: Effects of ultraviolet-B irradiance on soybean V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol. 74(3), 475–480 (1984)

    Google Scholar 

  116. Deckmyn, G., Martens, C., Impens, I.: The importance of the ratio UV-B/PAR during leaf development as determining factor of plant sensitivity to increased UV-B irradiance: effects on growth, gas-exchange and pigmentation of bean plants (Phaseolus vulgaris L). Plant Cell Environ. 17, 295–301 (1994)

    Article  Google Scholar 

  117. Hofmann, R.W., Campbell, B.D., Fountain, D.F.: Sensitivity of white clover to UV-B radiation depends on water availability, plant productivity and duration of stress. Glob. Change Biol. 9(3), 473–477 (2003)

    Article  Google Scholar 

  118. Krizek, D.T.: Influence of PAR and UV-A in determining plant sensitivity and photomorphogenic responses to UV-B radiation. Photochem. Photobiol. 79(4), 307–315 (2004)

    Article  Google Scholar 

  119. Gradov, O.V.: Experimental setups for ozonometric microscopy. Biomed. Eng. 46(6), 260–264 (2013)

    Article  Google Scholar 

  120. Gradov, O.V., Gradova, M.A.: Methods of electron microscopy of biological and abiogenic structures in artificial gas atmospheres. Surf. Eng. Appl. Electrochem. 52(1), 117–125 (2016)

    Article  Google Scholar 

  121. Van Goethem, T.M.W.J., Azevedo, L.B., Van Zelm, R., Hayes, F., Ashmore, M.R., Huijbregts, M.A.J.: Plant species sensitivity distributions for ozone exposure. Environ. Pollut. 178, 1–6 (2013)

    Article  Google Scholar 

  122. Tingey, D.T., Thutt, G.L., Gumpertz, M.L., Hogsett, W.E.: Plant water status influences ozone sensitivity of bean plants. Agric. Environ. 7(3–4), 243–254 (1982)

    Article  Google Scholar 

  123. Grantz, D.A.: Diel trend in plant sensitivity to ozone: implications for exposure-and flux-based ozone metrics. Atmos. Environ. 98, 571–580 (2014)

    Article  Google Scholar 

  124. Grantz, D.A., Vu, H., Heath, R.L., Burkey, K.: Diel trends in plant sensitivity to ozone: toward parameterization of the defense component of effective flux. AGU Fall Meet. Abs. 1, 0393 (2011)

    Google Scholar 

  125. Davis, D.D., Wood, F.A.: Influence of plant age on the sensitivity of Virginia pine to ozone. Phytopathology 63(3), 381–388 (1973)

    Article  Google Scholar 

  126. Timonen, U., Huttunen, S., Manninen, S.: Ozone sensitivity of wild field layer plant species of northern Europe. A review. Plant Ecol. 172(1), 27–39 (2004)

    Article  Google Scholar 

  127. Kline, L.J., Davis, D.D., Skelly, J.M., Savage, J.E., Ferdinand, J.L.: Ozone sensitivity of 28 plant selections exposed to ozone under controlled conditions. Northeast. Naturalist 15(1), 57–66 (2008)

    Google Scholar 

  128. Städtler, S., Ziegler, H.: Illustration of the genetic differences in ozone sensitivity between the varieties Nicotiana tabacum Bel W3 and Bel B using various plant systems. Botanica Acta 106(3), 265–276 (1993)

    Article  Google Scholar 

  129. Fletcher, J.S., Johnson, F.L., McFarlane, J.C.: Influence of greenhouse versus field testing and taxonomic differences on plant sensitivity to chemical treatment. Environ. Toxicol. Chem. 9(6), 769–776 (1990)

    Article  Google Scholar 

  130. Suseela, V., Tharayil, N., Xing, B., Dukes, J.S.: Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytol. 200(1), 122–133 (2013)

    Article  Google Scholar 

  131. Cleland, E.E., Collins, S.L., Dickson, T.L., Farrer, E.C., Gross, K.L., Gherardi, L.A., Hallett, L.M., Hobbs, R.J., Hsu, J.S., Turnbull, L., Suding, K.N.: Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94(8), 1687–1696 (2013)

    Google Scholar 

  132. Potts, D.L., Huxman, T.E., Scott, R.L., Williams, D.G., Goodrich, D.C.: The sensitivity of ecosystem carbon exchange to seasonal precipitation and woody plant encroachment. Oecologia 150(3), 453–463 (2006)

    Article  Google Scholar 

  133. Milly, P.C.D.: Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics. Geophys. Res. Lett. 24(3), 269–271 (1997)

    Article  Google Scholar 

  134. Feeley, K.J., Malhi, Y., Zelazowski, P., Silman, M.R.: The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of Amazonian plant species. Glob. Change Biol. 18(8), 2636–2647 (2012)

    Article  Google Scholar 

  135. Gradow, O. (ed.): Towards Phenospectral GC-Auxanometry. Scholars’ Press, Düsseldorf (2018). ISBN 978-620-2-30586-0

    Google Scholar 

  136. Springate, D.A., Kover, P.X.: Plant responses to elevated temperatures: a field study on phenological sensitivity and fitness responses to simulated climate warming. Glob. Change Biol. 20(2), 456–465 (2014)

    Article  Google Scholar 

  137. Schleip, C., Rais, A., Menzel, A.: Bayesian analysis of temperature sensitivity of plant phenology in Germany. Agric. For. Meteorol. 149(10), 1699–1708 (2009)

    Article  Google Scholar 

  138. Luxmoore, R.J., Stolzy, J.L., Holdeman, J.T.: Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation. Agric. Meteorol. 23, 115–129 (1981)

    Article  Google Scholar 

  139. Janssens, I.A., Carrara, A., Ceulemans, R.: Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob. Change Biol. 10(2), 161–169 (2004)

    Article  Google Scholar 

  140. McMurchie, E.J.: Temperature sensitivity of ion stimulated ATPases associated with some plant membranes. In: Low Temperature Stress in Crop Plants: The Role of the Membrane, pp. 163–177. Academic Press, New York (1979)

    Google Scholar 

  141. Boyd, F.T., Dickson, D.W.: Plant-parasitic nematodes: occurrence in Florida, sensitivity to temperatures, and effect on tropical forage yields. Proc. Soil Crop Sci. Soc. Florida 31, 267–268 (1971)

    Google Scholar 

  142. Rutishauser, T., Schleip, C., Sparks, T.H., Nordli, O., Menzel, A., Wanner, H., Jeanneret, F., Luterbacher, J.: Temperature sensitivity of Swiss and British plant phenology from 1753 to 1958. Clim. Res. 39, 179–190 (2009)

    Article  Google Scholar 

  143. Rutter, A.P., Schauer, J.J., Shafer, M.M., Creswell, J., Olson, M.R., Clary, A., Robinson, M., Parman, A.M., Katzman, T.L.: Climate sensitivity of gaseous elemental mercury dry deposition to plants: impacts of temperature, light intensity, and plant species. Environ. Sci. Technol. 45(2), 569–575 (2010)

    Article  Google Scholar 

  144. Woodcock, A.E.R., Wilkins, M.B.: The geoelectric effect in plant shoots: II. Sensitivity of concentration chain electrodes to reorientation. J. Exp. Botany 20(4), 687–697 (1969)

    Google Scholar 

  145. Laurinavicius, R., Svegzdienė, D., Gaina, V.: Force sensitivity of plant gravisensing. Adv. Space Res. 27(5), 899–906 (2001)

    Article  Google Scholar 

  146. Salisbury, F.B., Gillespie, L., Rorabaugh, P.: Gravitropism in higher plant shoots V. Changing sensitivity to auxin. Plant Physiol. 88(4), 1186–1194 (1988)

    Article  Google Scholar 

  147. Hunter, D.M., McFarlane, W., Sykes, A.G., Dennison, C.: Effect of pH on the self-exchange reactivity of the plant plastocyanin from parsley. Inorg. Chem. 40(2), 354–360 (2001)

    Article  Google Scholar 

  148. Pantoja, O., Smith, J.A.C.: Sensitivity of the plant vacuolar malate channel to pH, Ca2+ and anion-channel blockers. J. Membr. Biol. 186(1), 31–42 (2002)

    Article  Google Scholar 

  149. Rutkowska, A.: Sensitivity of plant and soil indices in evaluating the long-term consequences of soil mining from reserves of phosphorus, potassium, and magnesium. Commun. Soil Sci. Plant Anal. 44(1–4), 377–389 (2013)

    Article  Google Scholar 

  150. Silva, S.G., Nóbrega, J.A., Jones, B.T., Donati, G.L.: Magnesium nitrate as a chemical modifier to improve sensitivity in manganese determination in plant materials by tungsten coil atomic emission spectrometry. J. Anal. At. Spectrom. 29(8), 1499–1503 (2014)

    Article  Google Scholar 

  151. Poot, M., Gross, O., Epe, B., Pflaum, M., Hoehn, H.: Cell cycle defect in connection with oxygen and iron sensitivity in Fanconi anemia lymphoblastoid cells. Exp. Cell. Res. 222(2), 262–268 (1996)

    Article  Google Scholar 

  152. Horvath, I., Magyar, K., Gado, I.: The effect of methylene blue on the iron sensitivity of Streptomyces rimosus fermentations. Acta Microbiol. Acad. Sci. Hung. 6, 47–50 (1959)

    Google Scholar 

  153. Cassin, G., Mari, S., Curie, C., Briat, J.F., Czernic, P.: Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine. J. Exp. Bot. 60(4), 1249–1259 (2009)

    Article  Google Scholar 

  154. Flint, D.H., Emptage, M.H.: Dihydroxyacid dehydratase: isolation, characterization as Fe-S proteins, and sensitivity to inactivation by oxygen radicals. In: Biosynthesis of Branched Chain Amino Acids, pp. 285–314. VCH Publishers, New York (1990)

    Google Scholar 

  155. Blight, A.: Sensitivity of iron uptake, plant growth and nodulation of narrow-leafed lupin genotypes to bicarbonate. B.Sc. thesis, The University of Western Australia, Perth, Australia (1989)

    Google Scholar 

  156. Park, M.J., Jung, H.S., Kim, Y.J., Kwon, Y.J., Lee, J.K., Park, C.M.: High-sensitivity fluorescence imaging of iron in plant tissues. Chem. Commun. 50(62), 8547–8549 (2014)

    Article  Google Scholar 

  157. Gradov, O.V., Jablokov, A.G.: Novel morphometrics-on-a-chip: CCD or CMOS-lab-on-a-chip based on discrete converters of different physical and chemical parameters of histological samples into the optical signals with positional sensitivity for morphometry of non-optical patterns. J. Biomed. Technol. 3(2), 1–29 (2016)

    Google Scholar 

  158. Katayama, T., Nagamatsu, T.: Radiosensitivity in plants: I. Relation between the water content of some crop seeds and their sensitivity to different doses of X-rays and γ-rays. Jpn. J. Breed. 16(2), 77–82 (1966)

    Google Scholar 

  159. Francis, C.M., Gladstones, J.S.: Studies on the use of mutagenic agents in plant breeding. I. The effect of seed moisture content on sensitivity to X-ray in Lupinus angustifolius. Crop Pasture Sci. 14(1), 12–19 (1963)

    Google Scholar 

  160. Shaikh, M.A.Q.: Radiation sensitivity studies of Lathyrus species and Vicia ervilia (L.) Willd. III. Dose-effects on yield components and seed yields per plant. Bangladesh J. Agril. Sci. 3(2), 130–138 (1976)

    Google Scholar 

  161. LebaiJuri, M., Omar, M., Yusof, N.: Sensitivity of the conidia of plant pathogenic fungi to Gamma-rays, electron particles and X-ray (Bremsstrahlung) irradiation. World J. Microbiol. Biotechnol. 11(6), 610–614 (1995)

    Article  Google Scholar 

  162. Gyoergyne Czeck, B: Plant virus sensitivity to gamma irradiation. In: Symposium on the Possibilities of the Application of Irradiation in Agriculture and Food Industry, Budapest, Hungary; 15–16 March 1979, pp. 34–37 (1979)

    Google Scholar 

  163. Kumta, U.S., Sawant, P.L., Ramakrishnan, T.V.: Radiation sensitivity studies of plant pigments I. In Vitro lability of β-carotene in lipid solvents. Radiat. Bot. 10(2), 161–167 (1970)

    Google Scholar 

  164. Sawant, P.L., Ramakrishnan, T.V., Kumta, U.S.: Radiation sensitivity studies of plant pigments II. Effects of radiation on carotenoid fractions of orange juice and mango pulp. Radiat. Bot. 10(2), 169–174 (1970)

    Google Scholar 

  165. Ramakrishnan, T.V., Sawant, P.L., Kumta, U.S.: Radiation sensitivity studies of plant pigments. III. In vitro stability of β-carotene in aqueous dispersions. Radiat. Bot. 10(5), 395–399 (1970)

    Google Scholar 

  166. Hazama, Y., Hazama, K., Ehrenberg, L.: The influence of paramagnetic ions on the radiation sensitivity of plant seeds. Radiat. Bot. 3(1), 7–18 (1963)

    Article  Google Scholar 

  167. Mewissen, D.J., Damblon, J., Bacq, Z.M.: Comparative sensitivity to radiation of seeds from a wild plant grown on uraniferous and non-uraniferous soils. Nature 183, 1449 (1959)

    Article  Google Scholar 

  168. Sparrow, A.H.: Relationship between chromosome volume and radiation sensitivity in plant cells [Brookhaven National Lab, Upton, NY, №. BNL-7866; CONF-456–1 (1963)]. In: 18th Annual Symposium on Fundamental Cancer Research and Cellular Radiation Biology, Houston, Tex, (1964)

    Google Scholar 

  169. Myers, R.F.: The sensitivity of some plant-parasitic and free-living nematodes to gamma and X-irradiation. Nematologica 5(1), 56–63 (1960)

    Article  Google Scholar 

  170. Woodwell, G.M.: Sensitivity to ionizing radiation: Major ecosystems and dominant plant species. In: Environmental Biology, FASECB, pp. 181–182 (1966)

    Google Scholar 

  171. Stolte, K.W.: Sensitivity of plant ecosystems in desert areas to gaseous pollutants. In: Acid rain and air pollution in desert park areas. National Park Service, pp. 42–51. United States Department of the Interior (1991)

    Google Scholar 

  172. Fang, J., Zhang, H., Yang, N., Shao, L., He, P.: Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: Odor assessment and photochemical reactivity. J. Air Waste Manag. Assoc. 63(11), 1287–1297 (2013)

    Article  Google Scholar 

  173. Bushnell, J.: Sensitivity of the potato plant to soil aeration. Agron. J. 27(4), 251–253 (1935)

    Article  Google Scholar 

  174. Yoshikawa, T., Naito, Y. (eds.): Gas Biology Research in Clinical Practice. Karger Medical and Scientific Publishers (2011)

    Google Scholar 

  175. Lanza, R.C.: Imaging gas detectors for medicine and biology. Med. Prog. Technol. 15(3–4), 185–198 (1988)

    Google Scholar 

  176. Farkas, G.L., Konrad, E., Kiraly, Z.: The effect of light on the malonate sensitivity of plant respiration. Physiol. Plant. 10(2), 346–355 (1957)

    Article  Google Scholar 

  177. Beerling, D.J., Terry, A.C., Hopwood, C., Osborne, C.P.: Feeling the cold: atmospheric CO2 enrichment and the frost sensitivity of terrestrial plant foliage. Palaeogeogr. Palaeoclimatol. Palaeoecol. 182(1), 3–13 (2002)

    Article  Google Scholar 

  178. Zhan, X., Wilks, D.S.: CO2 sensitivity of plant leaf transpiration. In: Proceedings of the 21-st Conference on Agricultural and Forest Meteorology, San Diego, CA, pp. 7–11 (1994)

    Google Scholar 

  179. Letendre, J., Poulin, M., Rochefort, L.: Sensitivity of spectral indices to CO2 fluxes for several plant communities in a Sphagnum-dominated peatland. Can. J. Remote. Sens. 34(2), S414–S425 (2008)

    Article  Google Scholar 

  180. Darrall, N.M.: The sensitivity of net photosynthesis in several plant species to short-term fumigation with sulphur dioxide. J. Exp. Bot. 37(9), 1313–1322 (1986)

    Article  Google Scholar 

  181. Steubing, L., Fangmeier, A.: SO2-sensitivity of plant communities in a beech forest. Environ. Pollut. 44(4), 297–306 (1987)

    Article  Google Scholar 

  182. Seliskar, D.M., Smart, K.E., Higashikubo, B.T., Gallagher, J.L.: Seedling sulfide sensitivity among plant species colonizing Phragmites-infested wetlands. Wetlands 24(2), 426–433 (2004)

    Article  Google Scholar 

  183. Cox, R.M.: Sensitivity of forest plant reproduction to acid rain. In:: Proceedings of the International Conference “Acid rain and forest resources”, Quebec City, Canada (1983)

    Google Scholar 

  184. Rutishauser, T.: Historical phenology: plant phenological reconstructions and climate sensitivity in Northern Switzerland. Ph.D. thesis (2007)

    Google Scholar 

  185. Lapenis, A., Henry, H., Vuille, M., Mower, J.: Climatic factors controlling plant sensitivity to warming. Clim. Change 122(4), 723–734 (2014)

    Article  Google Scholar 

  186. Jonsdottir, I.S., Magnusson, B., Gudmundsson, J., Elmarsdottir, A. Hjartarson, H.: Variable sensitivity of plant communities in Iceland to experimental warming. Global Change Biol. 11, 553563 (2005)

    Google Scholar 

  187. Goswami, A., Main, D.J., Noto, C.R., Moore, T.L., Scotese, C.: Cretaceous climate sensitivity study using dinosaur and plant paleobiogeography. AGU Fall Meet. Abs. 1, 1358 (2009)

    Google Scholar 

  188. Su, W.-A., Mi, R.-O., Wang, W.-Y., Wang, H.-C.: The influence of cold hardening on plant stress sensitivity. Acta Plant Physiol. 3, 11 (1990)

    Google Scholar 

  189. Kouressy, M., Dingkuhn, M., Vaksmann, M., Heinemann, A.B.: Adaptation to diverse semi-arid environments of sorghum genotypes having different plant type and sensitivity to photoperiod. Agric. For. Meteorol. 148(3), 357–371 (2008)

    Article  Google Scholar 

  190. Beckerson, D.W., Cain, N., Hofstra, G., Ormrod, D.P., Campbell, P.A.: A guide to-plant-sensitivity to environmental-stress. Landscape Archit. 70(3), 299–303 (1980)

    Google Scholar 

  191. Milne, J.A., Hartley, S.E.: Upland plant communities-sensitivity to change. CATENA 42(2), 333–343 (2001)

    Article  Google Scholar 

  192. Joyce, C.: The sensitivity of a species-rich flood-meadow plant community to fertilizer nitrogen: the Lužnice river floodplain, Czech Republic. Plant Ecol. 155(1), 47–60 (2001)

    Article  Google Scholar 

  193. Esther, A., Groeneveld, J., Enright, N.J., Miller, B.P., Lamont, B.B., Perry, G.L.W., Blank, F.B., Jeltsch, F.: Sensitivity of plant functional types to climate change: classification tree analysis of a simulation model. J. Veg. Sci. 21(3), 447–461 (2010)

    Article  Google Scholar 

  194. Kim, D.-H.: SYMPOSIUM 4-Biochemistry and Molecular Biology of Plant-: biochemical basis for tissue-specific difference in auxin sensitivity between rice shoots and roots In: The Biochemical and Molecular Biology Society; formerly Korean Society of Biochemical and Molecular Biology, vol. 1, p. 56 (1999)

    Google Scholar 

  195. Otani, H., Nishimura, S., Kohmoto, K.: Nature of specific susceptibility to Alternaria kikuchiana in Nijisseiki Cultivar among Japanese pears: VI. Effect of known plant hormones on sensitivity of pear leaves to host-specific toxin, vol. 11, pp. 1–6. Archives of Tottori University, Faculty of Agriculture (1976)

    Google Scholar 

  196. Tingey, D.T., Andersen, C.P.: The physiological basis of differential plant sensitivity to changes in atmospheric quality. In: Ecological Genetics and Air Pollution, pp. 209-235. Springer, New York (1991)

    Google Scholar 

  197. Krüger, T.P., Ilioaia, C., Valkunas, L., van Grondelle, R.: Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. J. Phys. Chem. B 115(18), 5083–5095 (2011)

    Article  Google Scholar 

  198. Stone, J.M., Liang, X., Nekl, E.R., Stiers, J.J.: Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J. 41(5), 744–754 (2005)

    Article  Google Scholar 

  199. Li, L., Lin, L., Li, X., Lu, Y.: Sensitivity of photosystem II activity in immature and mature leaves of desert sun plant Alhagi sparsifolia Shap. to light stress. Acta Physiologiae Plantarum 37(8), 1–10 (2015)

    Google Scholar 

  200. Evans, L.T.: Inflorescence initiation in Loliurn temulentum L. 1. Effect of plant age and leaf area on sensitivity to photoperiodic induction. Aust. J. Biol. Sei. 13, 123–131 (1960)

    Google Scholar 

  201. Feldman, N.L.: The influence of wound injury on sensitivity of plant cells. In: Problems of Cytology and Protistology, pp. 216–223. Acad. Sci. USSR, Moscow-Leningrad (1960)

    Google Scholar 

  202. Mehlhorn, H., Wellburn, A.R.: Stress ethylene formation determines plant sensitivity to ozone. Nature 327(6121), 417–418 (1987)

    Article  Google Scholar 

  203. Perelygin, V.M., Shpirt, M.B., Aripov, O.A., Ershova, V.I.: Effect of some pesticides on immunological reactivity. Gig Sanit 12, 29–33 (1971). [in Russian]

    Google Scholar 

  204. Gradov, O.V.: Is it possible to consider kinetomics and argyromics as novel trends of functional morphology and systems biology of parasitic and nonparasitic Protozoa? A brief analytical review. J. Biomed. Technol. 3(1), 1–15 (2016)

    Google Scholar 

  205. Goldhamer, D.A., Fereres, E., Mata, M., Girona, J., Cohen, M.: Sensitivity of continuous and discrete plant and soil water status monitoring in peach trees subjected to deficit irrigation. J. Am. Soc. Hortic. Sci. 124(4), 437–444 (1999)

    Article  Google Scholar 

  206. Hansen, G.K.: A dynamic continuous simulation model of water state and transportation in the soil-plant-atmosphere system: I. The model and its sensitivity. Acta Agriculturae Scandinavica 25(2), 129–149 (1975)

    Google Scholar 

  207. Burló-Carbonell, F., Carbonell-Barrachina, A., Vidal-Roig, A., Mataix-Beneyto, J.: Effects of irrigation water quality on loquat plant nutrition: sensitivity of loquat plant to salinity. J. Plant Nutr. 20(1), 119–130 (1997)

    Article  Google Scholar 

  208. Aggarwal, P.K., Koundal, K.R.: Relative sensitivity of some physiological characteristics to plant water deficits in wheat. Plant Physiol. Biochem. 15(1), 161–168 (1988)

    Google Scholar 

  209. Granier C., Aguirrezabal, L., Chenu, K., Cookson, S.J., Dauzat, M., Hamard, P., Thioux, J.-J., Rolland, G., Bouchier-Combaud, S., Lebaudy, A., Muller, B., SimonneauT., Tardieu F.: PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169(3), 623–35 (2006)

    Google Scholar 

  210. Till, M.R.: The sensitivity of fruit growth rate to the water balance of the plant. Animal Prod. Sci. 5(16), 85–86 (1965)

    Article  Google Scholar 

  211. Xu, H.L., Yamagishi, T., Kumura, A.: Effects of water deficit on photosynthesis in wheat plants. 2: the physiological basis for the difference in photosynthetic sensitivity to water stress among plant parts. Jpn. J. Crop Sci. 56(4), 461–466 (1987) [in Japanese]

    Google Scholar 

  212. Hafner, C., Erdmenger, E., Jung, K., Gehre, M., Schüürmann, G.: Stable isotope tracer technique as a tool to increase the sensitivity of plant growth bioassays-investigations with Pentachlorophenol and Trichloroacetic acid. Fresenius Environ. Bull. 9(3/4), 225–231 (2000)

    Google Scholar 

  213. Markx, G.H., ten Hoopen, H.J.G., Meijer, J.J., Vinke, K.L.: Dielectric spectroscopy as a novel and convenient tool for the study of the shear sensitivity of plant cells in suspension culture. J. Biotechnol. 19(2), 145–157 (1991)

    Article  Google Scholar 

  214. Rosenberg, M.Z.: The hydrodynamic shear sensitivity of suspension cultured plant cells. Ph. D. thesis, Washington University, St. Louis, USA (1987)

    Google Scholar 

  215. Gradov, O.V.: Complex cross-correlated monitoring in phytophysiology of aquarium plants and artificiael ecosystems: from hydrochemistry and biophysics to DIY automatization. Aquaflora 2, 47–51 (2014). [in Russian]

    Google Scholar 

  216. Gradov, O.V.: Toward the biophysical, biochemical, biocenotic and biogeographic systematics of model experimental aquarium plants based on complex descriptors of plant cell/tissue response to hydrochemical factors in the framework of physical chemistry. Int. J. Environ. Prob. 4, 45–55 (2018)

    Google Scholar 

  217. Gradov, O.V.: Monitoring of nonstandard greenhouse substrates using submersible soil lab-on-a-chip approach. Greenhouse World 5, 43–46 (2012). [in Russian]

    Google Scholar 

  218. Gradov, O.V.: [Telemetric lab-on-a-chip systems as contemporary alternatives of submersible soil chambers and Rossi-Cholody slides for soil microbiome investigations]. In: Actual Aspects of Contemporary Microbiology, pp. 62–65 (2012) [in Russian].

    Google Scholar 

  219. Bolkhovitinoff, A., Krukowskikh, V., Gradov, O.: Towards the analytical approximation of weathering forms based on fitting of the geomorphological structures by the “Tafeln Höherer Funktionen” profile database. Eur. Geogr. Stud. 5, 21–31 (2018)

    Google Scholar 

  220. Alexandrov, P.L., Gradov, O.V.: The role of ion channels in biogeochemical evolution and phenetic systematics based on key libraries of patch-clamp fingerprints for different reference model geochemical conditions. Proc. Biogeochem. Lab. 26, 85–101 (2017). [in Russian]

    Google Scholar 

  221. Gradov, O., Gradova, M.: MS-patch-clamp or the possibility of mass spectrometry hybridization with patch-clamp setups for single cell metabolomics and channelomics. Adv. Biochem. 3, 66–71 (2015)

    Article  Google Scholar 

  222. Gradov, O., Orehov, F.: Correlational patch-clamp spectrometry of the ion channels. Biomed. Eng. Electron. 13, 5–28 (2016). [in Russian]

    Google Scholar 

  223. Jablokow, A., Gradow, O.: Verifying continuity of membranous organelles and measurements of exchange rate between the nucleus and cytoplasm using FLIP-like MALDI-based imaging [63rd ASMS Conference on Mass Spectrometry and Allied Topics]. J. Am. Soc. Mass Spectrom 26, 169-ThP662 (2015)

    Google Scholar 

  224. Jablokow, A., Gradow, O.: MS-FRAP or MALDI imaging setups with programmable laser sources: a new way to the diffusion, molecular mobility and binding measurements [63rd ASMS Conference on Mass Spectrometry and Allied Topics]. J. Am. Soc. Mass Spectrom 26, 63-MP175 (2015)

    Google Scholar 

  225. Bolkhovitinov, A.: Mathematical qualimetry for mass spectrometry: optimization and harmonization of sample preparation, data processing and data mining. J. Am. Soc. Mass Spectrom 26, 73-MP425 (2015)

    Google Scholar 

  226. Jablokow, A.G., Skrynnik, A.A., Orekhov, F.K., Nasirov, P.A., Gradov, O.V.: “MALDI-FLIP-on-a-chip” and “MALDI-FRAP-on-a-flap”: novel techniques for soil microbiology and environmental biogeochemistry. I. Biogeosyst. Tech. 4(2), 140–188 (2017)

    Google Scholar 

  227. Jablokow, A.G., Nasirov, P.A., Orekhov, F.K., Gradov, O.V.: MALDI-FLIP-on-a-chip” and “MALDI-FRAP-on-a-flap”: novel techniques for soil microbiology and environmental biogeochemistry. II. Biogeosyst. Tech. 5, 3–56 (2018)

    Google Scholar 

  228. Adamovich, E.D., Gradov, O.V.: Teraohmmeter-assisted measurements of plant leaf resistance. 2. Kinetic registration of plant leaf resistance (10x time-lapse registration). IEEE DataPort. https://doi.org/10.21227/x4nc-w679 (2018)

  229. Adamovich E.D., Gradov O.V.: Teraohmmeter-assisted measurements of plant leaf resistance. 3. Oscillations of plant leaf resistance. IEEE DataPort. https://doi.org/10.21227/5j37-ep41 (2018)

  230. Adamovich, E.D., Gradov, O.V.: Teraohmmeter-assisted measurements of plant leaf resistance. 4. Accelerated photoinduced kinetics of electric impedance shifting under UV irradiation. IEEE DataPort. https://doi.org/10.21227/4nc9-9c71 (2018)

  231. Jablokov, A., Skrynnik, A., Gradov, O.: Applications of tunable diode lasers and the tunable laser diode spectroscopy in Tschachotin’s microbeam setups for irradiation of biological tissues, cells and cellular compartments with positional selectivity. J. Phys. Chem. Biophys. 5(3), 74 (2015)

    Google Scholar 

  232. Gradov, O.V., Notchenko, A.V.: [Semiautomatic dendrochronography for research on morphogenesis and teratomorphosis on the saw cuts of higher plants]. Forestry Eng. J. 4(8), 47–57 (2012) [in Russian]

    Google Scholar 

  233. Orehov, F., Gradov, O.: Methods, approaches and tools of multifactorial chemoinformatics and bioinformatics in geoarchaeological and archaeomineral studies on spectroscopic and spectrographic basis. Geoarcheol. Archeol. Mineral. 2, 45–48 (2015). [in Russian]

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge their colleagues from the Department of Metrology and Measuring Instruments of GEOKHI RAS, who worked there in 2010–2014, as well as the colleagues from biogeochemical laboratory of GEOKHI RAS, who expressed their interest in this work, especially in the aspect of biogeochemical applications of the ion channel response analysis.

The authors gratefully acknowledge S.K. Pankratov, E.D. Adamovich and W. Lin for fruitful discussions after the main seminar in the theme of this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orekhov, F., Gradov, O. (2022). MultiSPAS: Multi-Descriptor Physical Approaches to Computerized Plant Ecology. In: Shamtsyan, M., Pasetti, M., Beskopylny, A. (eds) Robotics, Machinery and Engineering Technology for Precision Agriculture. Smart Innovation, Systems and Technologies, vol 247. Springer, Singapore. https://doi.org/10.1007/978-981-16-3844-2_30

Download citation

Publish with us

Policies and ethics