Skip to main content

Alkaloids from Marine Ascidians (Tunicates) and Potential for Cancer Drug Development

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences

Abstract

Tunicates are deliberated to be a rich source of alkaloids, with unique and diverse chemical structures. There are a number of alkaloids derived from marine ascidians and reported to have a variety of pharmacological activities. More than 300 such alkaloids from ascidians have been reported across the globe. In recent years, cancer has become a complicated disease encountered by developing and developed countries around the world. The marine ascidian-derived alkaloids play a potential role in cancer and other diseases. So far, two ascidian-derived alkaloid compounds are commercially available and employed as drugs for the treatment of various cancer in the USA. In other countries, few compounds are under clinical and preclinical trials. This chapter provides detailed information on alkaloids from marine ascidians and the development of these as a promising application in future as anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed AA, Abedalthagafi M (2016) Cancer diagnostics: the journey from histomorphology to molecular profiling. Oncotarget 7(36):58696

    Article  PubMed  PubMed Central  Google Scholar 

  • Aiello A, Fattorusso E, Imperatore C, Menna M, Müller W (2010) Iodocionin, a cytotoxic iodinated metabolite from the Mediterranean ascidian Ciona edwardsii. Mar Drugs 8(2):285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández Á (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3(3):3279–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam V, Venkatesan M, Ramachandran S, Sundaresan U (2018) Bioactive peptides from marine ascidians and future drug development – a review. Int J Pept Res Ther 24(1):13–18

    Article  CAS  Google Scholar 

  • Arumugam V, Venkatesan M, Ramachandran K, Ramachandran S, Palanisamy SK, Sundaresan U (2019) Purification, characterization and antibacterial properties of peptide from marine ascidian Didemnum sp. Int J Pept Res Ther:1–8

    Google Scholar 

  • Berman JJ (2004) Tumor classification: molecular analysis meets Aristotle. BMC Cancer 4(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Bontemps N, Bry D, López-Legentil S, Simon-Levert A, Long C, Banaigs B (2010) Structures and antimicrobial activities of pyridoacridine alkaloids isolated from different chromotypes of the ascidian Cystodytes dellechiajei. J Nat Prod 73(6):1044–1048

    Article  CAS  PubMed  Google Scholar 

  • Bruneton J (2008) Farmacognosia, 2nd edn. Acribia, Zaragoza. ISBN 978-1-84585-006-7

    Google Scholar 

  • Chen L, Fu C, Wang G (2017) Microbial diversity associated with ascidians: a review of research methods and application. Symbiosis 71(1):19–26

    Article  CAS  Google Scholar 

  • Chen L, Hu JS, Xu JL, Shao CL, Wang GY (2018) Biological and chemical diversity of ascidian-associated microorganisms. Mar Drugs 16(10):362

    Article  CAS  PubMed Central  Google Scholar 

  • Choudhary A, Naughton L, Montánchez I, Dobson A, Rai D (2017) Current status and future prospects of marine natural products (MNPs) as antimicrobials. Mar Drugs 15(9):272

    Article  CAS  PubMed Central  Google Scholar 

  • Clement JA, Kitagaki J, Yang Y, Saucedo CJ, O’Keefe BR, Weissman AM, McKee TC, McMahon JB (2008) Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53. Bioorg Med Chem 16(23):10022–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colditz GA, Wei EK (2012) Preventability of cancer: the relative contributions of biologic and social and physical environmental determinants of cancer mortality. Annu Rev Public Health 33:137–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Copp BR, Ireland CM, Barrows LR (1991) Wakayin: a novel cytotoxic pyrroloiminoquinone alkaloid from the ascidian Clavelina species. J Org Chem 56(15):4596–4597

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subj 1830(6):3670–3695

    Article  CAS  Google Scholar 

  • Davis R, Christensen L, Richardson A, Da Rocha R, Ireland C (2003) Rigidin E, a new pyrrolopyrimidine alkaloid from a Papua New Guinea tunicate Eudistoma species. Mar Drugs 1(1):27–33

    Article  CAS  PubMed Central  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4:687–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Facompré M, Tardy C, Bal-Mahieu C, Colson P, Perez C, Manzanares I, Cuevas C, Bailly C (2003) Lamellarin D: a novel potent inhibitor of topoisomerase I. Cancer Res 63(21):7392–7399

    PubMed  Google Scholar 

  • Foderaro TA, Barrows LR, Lassota P, Ireland CM (1997) Bengacarboline, a new β-carboline from a marine ascidian Didemnum sp. J Org Chem 62(17):6064–6065

    Article  CAS  Google Scholar 

  • França PH, Barbosa DP, da Silva DL, Ribeiro ÊA, Santana AE, Santos BV, Barbosa-Filho JM, Quintans JS, Barreto RS, Quintans-Júnior LJ, Araújo-Júnior JX (2014) Indole alkaloids from marine sources as potential leads against infectious diseases. Biomed Res Int 2014

    Google Scholar 

  • Gompel M, Leost M, Joffe EB, Puricelli L, Franco LH, Palermo J, Meijer L (2004) Meridianins, a new family of protein kinase inhibitors isolated from the ascidian Aplidium meridianum. Bioorg Med Chem Lett 14(7):1703–1707

    Article  CAS  PubMed  Google Scholar 

  • Guittat L, De Cian A, Rosu F, Gabelica V, De Pauw E, Delfourne E, Mergny JL (2005) Ascididemin and meridine stabilise G-quadruplexes and inhibit telomerase in vitro. Biochim Biophys Acta Gen Subj 1724(3):375–384

    Article  CAS  Google Scholar 

  • Gul W, Hamann MT (2005) Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci 78(5):442–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hénon H, Messaoudi S, Anizon F, Aboab B, Kucharczyk N, Léonce S, Golsteyn RM, Pfeiffer B, Prudhomme M (2007) Bis-imide granulatimide analogues as potent checkpoint 1 kinase inhibitors. Eur J Pharmacol 554(2–3):106–112

    Article  CAS  PubMed  Google Scholar 

  • Henrich CJ, Robey RW, Takada K, Bokesch HR, Bates SE, Shukla S, Ambudkar SV, McMahon JB, Gustafson KR (2009) Botryllamides: natural product inhibitors of ABCG2. ACS Chem Biol 4(8):637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinck L, Näthke I (2014) Changes in cell and tissue organization in cancer of the breast and colon. Curr Opin Cell Biol 26:87–95

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Ju DT, Chang CF, Reddy PM, Velmurugan BK (2017) A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine 7(4)

    Google Scholar 

  • Ibrahim SR, Mohamed GA (2016) Marine pyridoacridine alkaloids: biosynthesis and biological activities. Chem Biodivers 13(1):37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim SR, Mohamed GA (2017) Ingenine E, a new cytotoxic β-carboline alkaloid from the Indonesian sponge Acanthostrongylophoraingens. J Asian Nat Prod Res 19(5):504–509

    Article  CAS  PubMed  Google Scholar 

  • Imperatore C, Aiello A, D’Aniello F, Senese M, Menna M (2014) Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development. Molecules 19(12):20391–20423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isah T (2016) Anticancer alkaloids from trees: development into drugs. Pharmacogn Rev 10(20):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez PC, Wilke DV, Ferreira EG, Takeara R, De Moraes MO, Silveira ER, da Cruz Lotufo TM, Lopes NP, Costa-Lotufo LV (2012) Structure elucidation and anticancer activity of 7-oxostaurosporine derivatives from the Brazilian endemic tunicate Eudistoma vannamei. Mar Drugs 10(5):1092–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez PC, Wilke DV, Costa-Lotufo LV (2018) Marine drugs for cancer: surfacing biotechnological innovations from the oceans. Clinics 73

    Google Scholar 

  • Jin Z (2005) Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep 22(1):111–126

    Article  CAS  PubMed  Google Scholar 

  • Jin Z (2006) Imidazole, oxazole and thiazole alkaloids. Nat Prod Rep 23(3):464–496

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Fenical W (1996) Polycarpine dihydrochloride: a cytotoxic dimeric disulfide alkaloid from the Indian Ocean ascidian Polycarpa clavata. Tetrahedron Lett 37(14):2369–2372

    Article  CAS  Google Scholar 

  • Kobayashi J, Cheng J, Walchli MR, Nakamura H, Hirata Y, Sasaki T, Ohizumi Y (1988) Cystodytins A, B, and C, novel tetracyclic aromatic alkaloids with potent antineoplastic activity from the Okinawan tunicate Cystodytes dellechiajei. J Org Chem 53(8):1800–1804

    Article  CAS  Google Scholar 

  • Kobayashi JI, Tsuda M, Tanabe A, Ishibashi M, Cheng JF, Yamamura S, Sasaki T (1991) Cystodytins DI, new cytotoxic tetracyclic aromatic alkaloids from the Okinawan marine tunicate Cystodytes dellechiajei. J Nat Prod 54(6):1634–1638

    Article  CAS  Google Scholar 

  • Lake RJ, Blunt JW, Munro MH (1989) Eudistomins from the New Zealand ascidian Ritterella sigillinoides. Aust J Chem 42(7):1201–1206

    Article  CAS  Google Scholar 

  • Lambert G, Karney RC, Rhee WY, Carman MR (2016) Wild and cultured edible tunicates: a review. Manag Biol Invasions 7(1):59–66

    Article  Google Scholar 

  • Li Z, Song W, Rubinstein M, Liu D (2018) Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. J Hematol Oncol 11(1):142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberio MS, Sadowski MC, Davis RA, Rockstroh A, Vasireddy R, Lehman ML, Nelson CC (2015) The ascidian natural product eusynstyelamide B is a novel topoisomerase II poison that induces DNA damage and growth arrest in prostate and breast cancer cells. Oncotarget 6(41):43944

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindequist U (2016) Marine-derived pharmaceuticals–challenges and opportunities. Biomol Ther 24(6):561

    Article  CAS  Google Scholar 

  • Malve H (2016) Exploring the ocean for new drug developments: marine pharmacology. J Pharm Bioallied Sci 8(2):83

    Google Scholar 

  • Makarieva TN, Dmitrenok AS, Dmitrenok PS, Grebnev BB, Stonik VA (2001) Pibocin B, the first N-O-methylindole marine alkaloid, a metabolite from the Far-Eastern ascidian Eudistoma species. J Nat Prod 64(12):1559–1561

    Article  CAS  PubMed  Google Scholar 

  • Marco E, Laine W, Tardy C, Lansiaux A, Iwao M, Ishibashi F, Bailly C, Gago F (2005) Molecular determinants of topoisomerase I poisoning by Lamellarins: comparison with Camptothecin and structure− activity relationships. J Med Chem 48(11):3796–3807

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Rodríguez AD, Berlinck RG, Fusetani N (2011) Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 153(2):191–222

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Nguyen M, Kalwajtys P, Kerns H, Newman DJ, Glaser KB (2017) The marine pharmacology and pharmaceuticals pipeline in 2016. FASEB J 31:818–811

    Google Scholar 

  • Mehbub M, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12(8):4539–4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menna M, Fattorusso E, Imperatore C (2011) Alkaloids from marine ascidians. Molecules 16(10):8694–8732

    Article  CAS  PubMed Central  Google Scholar 

  • Moquin-Pattey C, Guyot M (1989) Grossularine-1 and grossularine-2, cytotoxic α-carbolines from the tunicate: Dendrodoa grossularia. Tetrahedron 45(11):3445–3450

    Article  CAS  Google Scholar 

  • Oku N, Matsunaga S, Fusetani N (2003) Shishijimicins A−C, novel enediyne antitumor antibiotics from the ascidian Didemnum proliferum. J Am Chem Soc 125(8):2044–2045

    Article  CAS  PubMed  Google Scholar 

  • Pearce A, Haas M, Viney R, Pearson SA, Haywood P, Brown C, Ward R (2017) Incidence and severity of self-reported chemotherapy side effects in routine care: a prospective cohort study. PLoS One 12(10):e0184360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajesh RP, Annappan M (2015) Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian (Eudistoma viride) against cervical cancer cells (HeLa). Anticancer Res 35(1):283–293.

    Google Scholar 

  • Rashid MA, Gustafson KR, Boyd MR (2001) New cytotoxic N-Methylated β-Carboline alkaloids from the marine ascidian Eudistoma gilboverde. J Nat Prod 64(11):1454–1456

    Article  CAS  PubMed  Google Scholar 

  • Reddy SM, Srinivasulu M, Satyanarayana N, Kondapi AK, Venkateswarlu Y(2005) New potent cytotoxic lamellarin alkaloids from Indian ascidian (Didemnum obscurum).Tetrahedron 61(39):9242–9247

    Google Scholar 

  • Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin DG (1990) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem 55(15):4512–4515

    Article  CAS  Google Scholar 

  • Sakai R, Rinehart KL, Guan Y, Wang AH (1992) Additional antitumor ecteinascidins from a Caribbean tunicate: crystal structures and activities in vivo. Proc Natl Acad Sci 89(23):11456–11460

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Ohtani II, Tanaka J, Higa T (1999) Iheyamines, new cytotoxic bisindole pigments from a colonial ascidian, Polycitorella sp. Tetrahedron Lett 40(2):303–306

    Article  CAS  Google Scholar 

  • Schmitz FJ, DeGuzman FS, Hossain MB, Van der Helm D (1991) Cytotoxic aromatic alkaloids from the ascidian Amphicarpa meridiana and Leptoclinides sp.: meridine and 11-hydroxyascididemin. J Org Chem 56(2):804–808

    Article  CAS  Google Scholar 

  • Schupp P, Steube K, Meyer C, Proksch P (2001) Anti-proliferative effects of new staurosporine derivatives isolated from a marine ascidian and its predatory flatworm. Cancer Lett 174(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • Segraves NL, Lopez S, Johnson TA, Said SA, Fu X, Schmitz FJ, Pietraszkiewicz H, Valeriote FA, Crews P (2003) Structures and cytotoxicities of fascaplysin and related alkaloids from two marine phyla—Fascaplysinopsis sponges and Didemnum tunicates. Tetrahedron Lett 44(17):3471–3475

    Article  CAS  Google Scholar 

  • Segraves NL, Robinson SJ, Garcia D, Said SA, Fu X, Schmitz FJ, Pietraszkiewicz H, Valeriote FA, Crews P (2004) Comparison of fascaplysin and related alkaloids: a study of structures, cytotoxicities, and sources. J Nat Prod 67(5):783–792

    Article  CAS  PubMed  Google Scholar 

  • Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS One 6(6):e20657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenkar N, Gittenberger A, Lambert G, Rius M, Moreira da Rocha R, Swalla BJ, Turon X (2019) Ascidiacea world database. Accessed at http://www.marinespecies.org/ascidiacea on 2019-05-14. https://doi.org/10.14284/353

  • Shochet NR, Rudi A, Kashman Y, Hod Y, El-Maghrabi MR, Spector I (1993) Novel marine alkaloids from the tunicate Eudistoma sp. are potent regulators of cellular growth and differentiation and affect cAMP-mediated processes. J Cell Physiol 157(3):481–492

    Article  CAS  PubMed  Google Scholar 

  • Singh KS, Majik MS (2016) Bioactive alkaloids from marine sponges. In: Marine sponges: chemico-biological and biomedical applications. Springer, New Delhi, pp 257–286

    Chapter  Google Scholar 

  • Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Takada K, Imamura N, Gustafson KR, Henrich CJ (2010) Synthesis and structure–activity relationship of botryllamides that block the ABCG2 multidrug transporter. Bioorg Med Chem Lett 20(4):1330–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tardy C, Facompré M, Laine W, Baldeyrou B, Garcı́a-Gravalos D, Francesch A, Mateo C, Pastor A, Jiménez JA, Manzanares I, Cuevas C. Topoisomerase I-mediated DNA cleavage as a guide to the development of antitumor agents derived from the marine alkaloid lamellarin D: triester derivatives incorporating amino acid residues. Bioorg Med Chem. 2004 12(7):1697-1712.

    Google Scholar 

  • Tatsuta T, Hosono M, Rotinsulu H, Wewengkang DS, Sumilat DA, Namikoshi M, Yamazaki H (2017) Lissoclibadin 1, a polysulfur aromatic alkaloid from the Indonesian ascidian Lissoclinum cf. badium, induces caspase-dependent apoptosis in human colon cancer cells and suppresses tumor growth in nude mice. J Nat Prod 80(2):499–502

    Article  CAS  PubMed  Google Scholar 

  • Urban S, Blunt JW, Munro MH (2002) Coproverdine, a novel, cytotoxic marine alkaloid from a New Zealand ascidian. J Nat Prod 65(9):1371–1373

    Article  CAS  PubMed  Google Scholar 

  • Verbitski SM, Mayne CL, Davis RA, Concepcion GP, Ireland CM (2002) Isolation, structure determination, and biological activity of a novel alkaloid, Perophoramidine, from the Philippine ascidian Perophora namei. J Org Chem 67(20):7124–7126

    Article  CAS  PubMed  Google Scholar 

  • Watters D (2018) Ascidian toxins with potential for drug development. Mar Drugs 16(5):162

    Article  CAS  PubMed Central  Google Scholar 

  • World Health Organization (WHO) (2017) Cancer: fact sheet. http://www.who.int/mediacentre/factsheets/fs297/en/

  • World Health Organization (2019) World Health Statistics 2019 – World Health Organization. https://www.who.int/health-topics/cancer#tab=tab_1.

  • Zhang H, Loveridge ST, Tenney K, Crews P (2016) A new 3-alkylpyridine alkaloid from the marine sponge Haliclona sp. and its cytotoxic activity. Nat Prod Res 30(11):1262–1265

    Google Scholar 

  • Zhang H, Chen J (2018) Current status and future directions of cancer immunotherapy. J Cancer 9(10):1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the CSIR-SRF, New Delhi.

Conflict of the Interest

All authors have the no conflict interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatesan, M. et al. (2020). Alkaloids from Marine Ascidians (Tunicates) and Potential for Cancer Drug Development. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_15

Download citation

Publish with us

Policies and ethics