Skip to main content

Therapeutic Applications of Microbial Enzymes in the Management of Kidney Stone Diseases

  • Chapter
  • First Online:
Microbial Enzymes: Roles and Applications in Industries

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 11))

Abstract

Nephrolithiasis is a terrible pathological condition marked by the presence and formation of kidney stones. It affects around 3–20% of the community in the world. Several environmental, physiological, and nutritional conditions influence this disease. Not only the food sources but also the body’s own metabolism add up oxalate content in the human body. The increased intake of oxalate leads to hyperoxaluria, which often results in the formation of calcium oxalate stones, commonly known as kidney stones. The incidences of kidney stone are very common, and the current therapeutic measure of its cure is not much effective. Therefore, new therapeutic approaches are needed. In the last few years, the use of gut microbiome with oxalate-degrading activity has emerged as an excellent therapeutic approach to treat kidney stones. As the genes responsible for oxalate-degrading enzymes are not found in humans use of bacterial enzymes with the ability to degrade oxalate in intestinal digestion has a significant therapeutic impact. This chapter summarizes the roles of microbial enzymes produced by gut microflora involved in the solubilization of the dietary oxalates, and their potential applications in kidney stone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abratt VR, Reid SJ (2010) Oxalate degradation bacteria of the human gut as probiotic in the management of kidney stones diseases. Adv Appl Microbiol 72:63–87

    Article  CAS  PubMed  Google Scholar 

  • Aguilar C, Urzúa U, Koenig C, Vicuña R (1999) Oxalate oxidase from Ceriporiopsis subvermispora: biochemical and cytochemical studies. Arch Biochem Biophys 366:275–282

    Article  CAS  PubMed  Google Scholar 

  • Alberta A, Tiwaria V, Paula E, Ganesana D, Ayyavub M, Kujura R, Ponnusamyc S, Shanmugamd K, Sasoe L, Selvama GS (2017) Expression of heterologous oxalate decarboxylase in HEK293 cells confers protection against oxalate induced oxidative stress as a therapeutic approach for calcium oxalate stone disease. J Enzyme Inhib Med Chem 32:426 433

    Google Scholar 

  • Allison MJ, Cook HM (1981) Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Science 212:675–676

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Dorrestein P, Kinsland C, Begley T, Ealick S (2002) Structure of oxalate decarboxylase from Bacillus subtilis at 1. 75Å resolution. Biochemistry 41:7659–7669

    Article  CAS  PubMed  Google Scholar 

  • Antelmann H, Towe S, Albrecht D, Hecker M (2007) The phosphorus source phytate changes the composition of the cell wall proteome in Bacillus subtilis. J Proteome Res 6:897–903

    Article  CAS  PubMed  Google Scholar 

  • Aslani MR, Movassaghi AR, Najarnezhad V, Pirouz HJ, Bami MH (2011) Acute oxalate intoxication associated to ingestion of eshnan (Seidlitzia rosmarinus) in sheep. Trop Anim Health Prod 43:1065–1068

    Article  PubMed  Google Scholar 

  • Bungash K, Shigri F, Jamal A, Anwar K (2011) Spectrum of renal stones composition; chemical analysis of kidney stones. Int J Pathol 9:63–66

    Google Scholar 

  • Burrell MR, Just VJ, Bowater L, Fairhurst SA, Requena L, Lawson DM, Bornemann S (2007) Oxalate decarboxylase and oxalate oxidase activities can be interchanged with a specificity switch of up to 282000 by mutating an active site lid. Biochemistry 46:12327–12336

    Article  CAS  PubMed  Google Scholar 

  • Cai XH, Lin RH, Wu J, He JB, Wu YC, Wang XY (2018) Adsorption of ethylenediaminetetraacetic dianhydride modified oxalate decarboxylase on calcium oxalate. Biotech Histochem 93:220. https://doi.org/10.1080/10520295.2017.1420820

    Article  CAS  PubMed  Google Scholar 

  • Cowley AB, Poage DW, Dean RR, Meschter CL, Ghoddusi M, Li Q-S, Sidhu H (2010) 14-day repeat-dose oral toxicity evaluation of oxazyme in rats and dogs. Int J Toxicol 29:20–31

    Article  CAS  PubMed  Google Scholar 

  • Dias BBA, Cunha WG, Morais LS, Vianna GR, Rech EL, de Capdeville G, Aragão FJL (2006) Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathol 55:187–193

    Article  CAS  Google Scholar 

  • Ellis ML, Shaw KJ, Jackson SB, Daniel SL, Knight J (2015) Analysis of commercial kidney stone probiotic supplements. Urology 85:517–521

    Article  PubMed  Google Scholar 

  • Federici F, Vitali B, Gotti R, Pasca MR, Gobbi S, Peck AB, Brigidi P (2004) Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis. Appl Environ Microbiol 70:5066–5073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomathi S, Sasikumar P, Anbazhagan K, Sasikumar S, Kavitha M, Selvi MS, Selvam GS (2014) Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: assessment of probiotic potential. Sci World J:648059

    Google Scholar 

  • Grąz M, Jarosz-Wilkołazka A, Pawlikowska-Pawlęga B (2009) Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelia morphology. Biometals 22:401–410

    Article  PubMed  CAS  Google Scholar 

  • Grujic D, Salido EC, Shenoy BC, Langman CB, McGrath ME, Patel RJ, Rashid A, Mandapati S, Jung CW, Margolin AL (2009) Hyperoxaluria is reduced and nephrocalcinosis prevented with an oxalate-degrading enzyme in mice with hyperoxaluria. Am J Nephrol 29:86–93

    Article  CAS  PubMed  Google Scholar 

  • Haas GJ, Fleischman AI (1961) The rapid enzymatic determination of oxalate in wort and beer. Agric Food Chem 9:451–452

    Article  CAS  Google Scholar 

  • Hatch M (2014) Intestinal adaptations in chronic kidney disease and the influence of gastric bypass surgery. Exp Physiol 99:1163–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoppe B, Unruh G, Hesse NLA, Sidhu H (2005) Oxalate degrading bacteria: new treatment option for patients with primary and secondary hyperoxaluria? Urol Res 33:372–375

    Article  PubMed  Google Scholar 

  • Hu Y, Xiang M, Jin C, Chen Y (2015) Characteristics and heterologous expressions of oxalate degrading enzymes “oxalate oxidases” and their applications on immobilization, oxalate detection, and medical usage potential. J Biotechnol Res 6:63–75

    CAS  Google Scholar 

  • Jeong BC, Han DH, Seo SI, Jeon SS, Lee HM, Choi HY, Park YH, Kim HH (2009) YvrK gene recombinant E. coli reduce the concentration of urine oxalate in transient hyperoxaluria rat model. J Urol 181:660

    Article  Google Scholar 

  • Jin Z-X, Wang C, Chen W, Chen X, Li X (2007) Induction of oxalate decarboxylase by oxalate in a newly isolated Pandoraea sp. OXJ-11 and its ability to protect against Sclerotinia sclerotiorum infection. Can J Microbiol 53:1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Just VJ, Stevenson CEM, Bowater L, Tanner A, Lawson DM, Bornemann S (2004) A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active site. J Biol Chem 279:19867–19874

    Article  CAS  PubMed  Google Scholar 

  • Just VJ, Burrell MR, Bowater L, McRobbie I, Stevenson CEM, Lawson DM, Bornemann S (2007) The identity of the active site of oxalate decarboxylase and the importance of the stability of active-site lid conformations. Biochem J 407:397–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A (2000) Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J Biol Chem 275:7230–7238

    Article  CAS  PubMed  Google Scholar 

  • Kolandaswamy A, George L, Sadasivam S (2009) Heterologous expression of oxalate decarboxylase in Lactobacillus plantarum NC8. Curr Microbiol 58:117–121

    Article  CAS  PubMed  Google Scholar 

  • Koyama H (1988) Purification and characterization of oxalate oxidase from Pseudomonas sp. OX-53. Agric Biol Chem 52:743–748

    CAS  Google Scholar 

  • Kumar R, Ghoshal UC, Singh G, Mittal RD (2004) Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: possible role in renal stone formation. J Gastroenterol Hepatol 19:1403–1409

    Article  PubMed  Google Scholar 

  • Lieske JC, Tremaine WJ, Simone C, O’Connor HM, Li X, Bergstralh EJ, Goldfarb SD (2010) Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int 78:1178–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLellan SR, Wecke T, Helmann JD (2008) A previously unidentified factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilis. Mol Microbiol 69:954–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLellan SR, Helmann JD, Antelmann H (2009) The yvri alternative factor is essential for acid stress induction of oxalate decarboxylase in Bacillus subtilis. J Bacteriol 191:931–939

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä MR (2009) The white-rot fungi Phlebia radiata and Dichomitus squalens in wood-based cultures: expression of laccases, lignin peroxidases, and oxalate decarboxylase. Ph.D. thesis, University of Helsinki, Helsinki

    Google Scholar 

  • Mäkelä MR, Hildén K, Hatakka A, Lundell TK (2009) Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and noninduced expression on wood and in liquid cultures. Microbiology 155:2726–2738

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä MR, Hildén K, Lundell TK (2010) Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi. Appl Microbiol Biotechnol 87:801–814

    Article  PubMed  CAS  Google Scholar 

  • Miller AW, Dearing D (2013) The metabolic and ecological interactions of oxalate-degrading Bacteria in the mammalian gut. Pathogens 2:636–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogna L, Pane M, Nicola S, Raiteri E (2014) Screening of different probiotic strains for their in vitro ability to metabolise oxalates. J Clin Gastroenterol 48:S91–S95

    Article  CAS  PubMed  Google Scholar 

  • Murthy MSR, Talwar HS, Nath R, Thind SK (1981) Oxalate decarboxylase from guinea pig liver. IRCS Med Sci 9:683–684

    CAS  Google Scholar 

  • Nazzal L, Puri S, Goldfarb DS (2016) Enteric hyperoxaluria: an important cause of end-stage kidney disease. Nephrol Dial Transplant 31:375–382

    Article  PubMed  Google Scholar 

  • Peck AB, Canales BK, Nguyen CQ (2016) Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease. Urolithiasis 44:45–50

    Article  CAS  PubMed  Google Scholar 

  • Sadaf H, Raza SI, Hassan SW (2017) Role of gut microbiota against calcium oxalate. Microb Pathog 109:287–291

    Article  CAS  PubMed  Google Scholar 

  • Salminen S, Nybom S, Meriluoto J, Maria CC, Satu V, Nezami H (2010) Interaction of probiotics and pathogens benefits to human health? Curr Opin Biotechnol 21:157–167

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Liu F, Koc H, Tien M (2007) Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153:3023–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland JW, Parks JH, Coe FL (1985) Recurrence after a single renal stone in a community practice. Miner Electrolyte Metab 11:267–269

    CAS  PubMed  Google Scholar 

  • Svedruzic D, Jonssona S, Toyotaa CG, Reinhardtb LA, Ricagnoc S, Lindqvistb Y, Richardsa NGJ (2005) The enzymes of oxalate metabolism: unexpected structures and mechanisms. Arch Biochem Biophys 433:176–192

    Article  CAS  PubMed  Google Scholar 

  • Svedruzic D, Liu Y, Reinhardt LA, Wroclawska E, Cleland WW, Richards NGJ (2007) Investigating the roles of putative active site residues in the oxalate decarboxylase from Bacillus subtilis. Arch Biochem Biophys 464:36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabares LC, Gätjens J, Hureau C, Burrell MR, Bowater L, Pecoraro VL, Bornemann S, Un S (2009) pH-dependent structures of the manganese binding sites in oxalate decarboxylase as revealed by high-field electron paramagnetic resonance. J Phys Chem B 113:9016–9025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinchieri A (2013) Diet and renal stone formation. Minerva Med 104:41–54

    CAS  PubMed  Google Scholar 

  • Turroni S, Vitali B, Bendazzoli C, Candela M, Gotti R, Federici F, Pirovano F, Brigidi P (2007) Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J Appl Microbiol 103:1600–1609

    Article  CAS  PubMed  Google Scholar 

  • Twahir U, Molina L, Ozarowski A, Angerhofer A (2015) Immobilization of Bacillus subtilis oxalate decarboxylase on a Zn-IMAC resin. Biochem Biophys Rep 4:98–103

    PubMed  PubMed Central  Google Scholar 

  • Walz A, Zingen-Sell I, Theisen S, Kortekamp A (2008) Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum. Eur J Plant Pathol 120:317–330

    Article  CAS  Google Scholar 

  • Watanabe T, Hattori T, Tengku S, Shimada M (2005) Purification and characterization of NAD-dependent formate dehydrogenase from the white-rot fungus Ceriporiopsis subvermispora and a possible role of the enzyme in oxalate metabolism. Enzym Microb Technol 37:68–75

    Article  CAS  Google Scholar 

  • Whittaker MM, Whittaker JW (2002) Characterization of recombinant barley oxalate oxidase expressed by Pichia pastoris. J Biol Inorg Chem 7:136–145

    Article  CAS  PubMed  Google Scholar 

  • Yu-Hu S, Liu RJ, Wang HQ (2008) Oxalate decarboxylase from Agrobacterium tumefaciens C58 is translocated by a twin arginine translocation system. J Microbiol Biotechnol 18:1245–1251

    Google Scholar 

Download references

Acknowledgments

We are thankful to Naveen Kumar Arora and Jitendra Mishra for providing editorial contribution. We are also gratified to Jitendra Mishra for preparing color illustration.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Kanwar, S.S. (2020). Therapeutic Applications of Microbial Enzymes in the Management of Kidney Stone Diseases. In: Arora, N., Mishra, J., Mishra, V. (eds) Microbial Enzymes: Roles and Applications in Industries. Microorganisms for Sustainability, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-15-1710-5_13

Download citation

Publish with us

Policies and ethics