Skip to main content
Log in

Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease?

  • Invited Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Renal urolithiasis is a pathological condition common to a multitude of genetic, physiological and nutritional disorders, ranging from general hyperoxaluria to obesity. The concept of quickly dissolving renal uroliths via chemolysis, especially calcium-oxalate kidney stones, has long been a clinical goal, but yet to be achieved. Over the past 25 years, there has been a serious effort to examine the prospects of using plant and microbial oxalate-degrading enzymes known to catabolize oxalic acid and oxalate salts. While evidence is emerging that bacterial probiotics can reduce recurrent calcium-oxalate kidney stone disease by lowering systemic hyperoxaluria, the possible use of free oxalate-degrading enzyme therapy remains a challenge with several hurdles to overcome before reaching clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cochat P, Rumsby G (2013) Primary hyperoxaluria. N Engl J Med 369(7):649–658

    Article  CAS  PubMed  Google Scholar 

  2. Svedruzic D, Jonsson S, Toyota CG, Reinhardt LA, Ricagno S, Lindqvist Y, Richards NG (2005) The enzymes of oxalate metabolism: unexpected structures and mechanisms. Arch Biochem Biophys 433(1):176–192

    Article  CAS  PubMed  Google Scholar 

  3. Williams HE, Wandzilak TR (1989) Oxalate synthesis, transport and the hyperoxaluric syndromes. J Urol 141(3 Pt 2):742–749

    CAS  PubMed  Google Scholar 

  4. Rodby RA, Tyszka TS, Williams JW (1991) Reversal of cardiac dysfunction secondary to type 1 primary hyperoxaluria after combined liver-kidney transplantation. Am J Med 90(4):498–504

    Article  CAS  PubMed  Google Scholar 

  5. Menon M, Mahle CJ (1982) Oxalate metabolism and renal calculi. J Urol 127(1):148–151

    CAS  PubMed  Google Scholar 

  6. Curhan GC, Willett WC, Rimm EB, Stampfer MJ (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 328(12):833–838

    Article  CAS  PubMed  Google Scholar 

  7. Lindsjo M, Danielson BG, Fellstrom B, Ljunghall S (1989) Intestinal oxalate and calcium absorption in recurrent renal stone formers and healthy subjects. Scand J Urol Nephrol 23(1):55–59

    CAS  PubMed  Google Scholar 

  8. Bulgin MS (1988) Losses related to the ingestion of lincomycin-medicated feed in a range sheep flock. J Am Vet Med Assoc 192(8):1083–1086

    CAS  PubMed  Google Scholar 

  9. Costello JF, Smith M, Stolarski C, Sadovnic MJ (1992) Extrarenal clearance of oxalate increases with progression of renal failure in the rat. J Am Soc Nephrol 3(5):1098–1104

    CAS  PubMed  Google Scholar 

  10. Camici M, Balestri PL, Lupetti S, Colizzi V, Falcone G (1982) Urinary excretion of oxalate in renal failure. Nephron 30(3):269–270

    Article  CAS  PubMed  Google Scholar 

  11. Matthews LA, Doershuk CF, Stern RC, Resnick MI (1996) Urolithiasis and cystic fibrosis. J Urol 155(5):1563–1564

    Article  CAS  PubMed  Google Scholar 

  12. Strandvik B, Hjelte L (1993) Nephrolithiasis in cystic fibrosis. Acta Paediatr 82(3):306–307

    Article  CAS  PubMed  Google Scholar 

  13. Katz SM, Krueger LJ, Falkner B (1988) Microscopic nephrocalcinosis in cystic fibrosis. N Engl J Med 319(5):263–266

    Article  CAS  PubMed  Google Scholar 

  14. Hoppe B, Hesse A, Bromme S, Rietschel E, Michalk D (1998) Urinary excretion substances in patients with cystic fibrosis: risk of urolithiasis? Pediatr Nephrol 12(4):275–279

    Article  CAS  PubMed  Google Scholar 

  15. Hylander E, Jarnum S, Jensen HJ, Thale M (1978) Enteric hyperoxaluria: dependence on small intestinal resection, colectomy, and steatorrhoea in chronic inflammatory bowel disease. Scand J Gastroenterol 13(5):577–588

    Article  CAS  PubMed  Google Scholar 

  16. Lindsjo M, Danielson BG, Fellstrom B, Lithell H, Ljunghall S (1989) Intestinal absorption of oxalate and calcium in patients with jejunoileal bypass. Scand J Urol Nephrol 23(4):283–289

    Article  CAS  PubMed  Google Scholar 

  17. Stauffer JQ, Humphreys MH (1972) Hyperoxaluria with intestinal disease. N Engl J Med 287(8):412

    CAS  PubMed  Google Scholar 

  18. Worcester EM, Fellner SK, Nakagawa Y, Coe FL (1994) Effect of renal transplantation on serum oxalate and urinary oxalate excretion. Nephron 67(4):414–418

    Article  CAS  PubMed  Google Scholar 

  19. Dobbins JW, Binder HJ (1977) Importance of the colon in enteric hyperoxaluria. N Engl J Med 296(6):298–301

    Article  CAS  PubMed  Google Scholar 

  20. Allison MJ, Cook HM (1981) Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Science 212(4495):675–676

    Article  CAS  PubMed  Google Scholar 

  21. Miller AW, Dearing D (2013) The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens 2(4):636–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. McDonald GB, Earnest DL, Admirand WH (1977) Hyperoxaluria correlates with fat malabsorption in patients with sprue. Gut 18(7):561–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hatch M, Freel RW, Vaziri ND (1994) Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflugers Arch 426(1–2):101–109

    Article  CAS  PubMed  Google Scholar 

  24. Hatch M (1993) Oxalate status in stone-formers. Two distinct hyperoxaluric entities. Urol Res 21(1):55–59

    Article  CAS  PubMed  Google Scholar 

  25. Allison MJ, Cook HM, Milne DB, Gallagher S, Clayman RV (1986) Oxalate degradation by gastrointestinal bacteria from humans. J Nutr 116(3):455–460

    CAS  PubMed  Google Scholar 

  26. Hatch M (2014) Intestinal adaptations in chronic kidney disease and the influence of gastric bypass surgery. Exp Physiol 99(9):1163–1167

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kumar R, Ghoshal UC, Singh G, Mittal RD (2004) Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: possible role in renal stone formation. J Gastroenterol Hepatol 19(12):1403–1409

    Article  PubMed  Google Scholar 

  28. Goldfarb DS (2003) Increasing prevalence of kidney stones in the United States. Kidney Int 63(5):1951–1952

    Article  PubMed  Google Scholar 

  29. Scales CD Jr, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165

    Article  PubMed Central  PubMed  Google Scholar 

  30. Schissel BL, Johnson BK (2011) Renal stones: evolving epidemiology and management. Pediatr Emerg Care 27(7):676–681

    Article  PubMed  Google Scholar 

  31. Bihl G, Meyers A (2001) Recurrent renal stone disease-advances in pathogenesis and clinical management. Lancet 358(9282):651–656

    Article  CAS  PubMed  Google Scholar 

  32. Khan SR, Hackett RL (1985) Calcium oxalate urolithiasis in the rat: is it a model for human stone disease? A review of recent literature. Scan Electron Microsc (Pt 2):759–774

  33. Khan SR (1997) Animal models of kidney stone formation: an analysis. World J Urol 15(4):236–243

    Article  CAS  PubMed  Google Scholar 

  34. de Bruijn WC, Boeve ER, van Run PR, van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, Schroder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 9(1):103–114

  35. Argenzio RA, Liacos JA, Allison MJ (1988) Intestinal oxalate-degrading bacteria reduce oxalate absorption and toxicity in guinea pigs. J Nutr 118(6):787–792

    CAS  PubMed  Google Scholar 

  36. Sidhu H, Allison MJ, Chow JM, Clark A, Peck AB (2001) Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J Urol 166(4):1487–1491

    Article  CAS  PubMed  Google Scholar 

  37. Cornelius JG, Peck AB (2004) Colonization of the neonatal rat intestinal tract from environmental exposure to the anaerobic bacterium Oxalobacter formigenes. J Med Microbiol 53(Pt 3):249–254

    Article  PubMed  Google Scholar 

  38. Sidhu H, Schmidt ME, Cornelius JG, Thamilselvan S, Khan SR, Hesse A, Peck AB (1999) Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10(Suppl 14):S334–S340

    CAS  PubMed  Google Scholar 

  39. Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141(1):1–7

    Article  CAS  PubMed  Google Scholar 

  40. Allison MJ, MacGregor B, Sharp R, Stahl DA (2001) Genus Oxalobacter vol II. Bergey’s Manual of Systematic Bacteriology. Springer-Verlag, New York

    Google Scholar 

  41. Sidhu H, Enatska L, Ogden S, Williams WN, Allison MJ, Peck AB (1997) Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reaction-based detection system. Mol Diagn 2(2):89–97

    Article  CAS  PubMed  Google Scholar 

  42. Dawson KA, Allison MJ, Hartman PA (1980) Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol 40(4):833–839

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Daniel SL, Hartman PA, Allison MJ (1987) Microbial degradation of oxalate in the gastrointestinal tracts of rats. Appl Environ Microbiol 53(8):1793–1797

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Smith RL, Oremland RS (1983) Anaerobic oxalate degradation: widespread natural occurrence in aquatic sediments. Appl Environ Microbiol 46(1):106–113

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Barnett C, Nazzal L, Goldfarb DS, Blaser MJ (2015) The presence of Oxalobacter formigenes in the microbiome of healthy young adults. J Urol. doi:10.1016/j.juro.2015.08.070

    PubMed  Google Scholar 

  46. Sidhu H, Hoppe B, Hesse A, Tenbrock K, Bromme S, Rietschel E, Peck AB (1998) Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352(9133):1026–1029

    Article  CAS  PubMed  Google Scholar 

  47. Nathanson S, Frere F, Tassin E, Foucaud P (2003) Urolithiasis in cystic fibrosis. Arch Pediatr 10(9):794–796

    Article  CAS  PubMed  Google Scholar 

  48. Bohles H, Michalk D (1982) Is there a risk for kidney stone formation in cystic fibrosis? Helv Paediatr Acta 37(3):267–272

    CAS  PubMed  Google Scholar 

  49. Sidhu H, Allison M, Peck AB (1997) Identification and classification of Oxalobacter formigenes strains by using oligonucleotide probes and primers. J Clin Microbiol 35(2):350–353

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Binder HJ (1974) Intestinal oxalate absorption. Gastroenterology 67(3):441–446

    CAS  PubMed  Google Scholar 

  51. Moller T, Muller G, Schutte W, Rogos R, Schneider W (1987) Oxalic acid resorption in patients with resection of the small intestine, jejunoileal bypass, Crohn disease and chronic pancreatitis. Dtsch Z Verdau Stoffwechselkr 47(3):113–118

    CAS  PubMed  Google Scholar 

  52. Caudarella R, Rizzoli E, Pironi L, Malavolta N, Martelli G, Poggioli G, Gozzetti G, Miglioli M (1993) Renal stone formation in patients with inflammatory bowel disease. Scanning Microsc 7(1):371–379 (discussion 379–380)

  53. McConnell N, Campbell S, Gillanders I, Rolton H, Danesh B (2002) Risk factors for developing renal stones in inflammatory bowel disease. BJU Int 89(9):835–841

    Article  CAS  PubMed  Google Scholar 

  54. Trinchieri A, Lizzano R, Castelnuovo C, Zanetti G, Pisani E (2002) Urinary patterns of patients with renal stones associated with chronic inflammatory bowel disease. Arch Ital Urol Androl 74(2):61–64

    PubMed  Google Scholar 

  55. Worcester EM (2002) Stones from bowel disease. Endocrinol Metab Clin N Am 31(4):979–999

    Article  CAS  Google Scholar 

  56. Canales BK, Hatch M (2014) Kidney stone incidence and metabolic urinary changes after modern bariatric surgery: review of clinical studies, experimental models, and prevention strategies. Surg Obes Relat Dis 10(4):734–742

    Article  PubMed Central  PubMed  Google Scholar 

  57. Jairath A, Parekh N, Otano N, Mishra S, Ganpule A, Sabnis R, Desai M (2015) Oxalobacter formigenes: opening the door to probiotic therapy for the treatment of hyperoxaluria. Scand J Urol 49(4):334–337

    CAS  PubMed  Google Scholar 

  58. Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, Deschenes G, Unwin R, Milliner D (2011) Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant 26(11):3609–3615

    Article  PubMed  Google Scholar 

  59. Mogna L, Pane M, Nicola S, Raiteri E (2014) Screening of different probiotic strains for their in vitro ability to metabolise oxalates: any prospective use in humans? J Clin Gastroenterol 48(Suppl 1):S91–S95

    Article  CAS  PubMed  Google Scholar 

  60. Sinha M, Prabhu K, Venkatesh P, Krishnamoorthy V (2013) Results of urinary dissolution therapy for radiolucent calculi. Int Braz J Urol 39(1):103–107

    Article  PubMed  Google Scholar 

  61. Thalji NK, Richards NG, Peck AB, Canales BK (2011) Enzymatic dissolution of calcium and struvite crystals: in vitro evaluation of biochemical requirements. Urology 78(3):721.e713–721.e717

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammon B. Peck.

Ethics declarations

Conflict of interest

There are no authors of this report that currently have a conflict of interest with the subject matter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peck, A.B., Canales, B.K. & Nguyen, C.Q. Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease?. Urolithiasis 44, 45–50 (2016). https://doi.org/10.1007/s00240-015-0845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-015-0845-6

Keywords

Navigation