Skip to main content

Antimicrobial Host Defence Peptides: Immunomodulatory Functions and Translational Prospects

  • Chapter
  • First Online:
Antimicrobial Peptides

Abstract

Cationic host defence peptides (CHDPs), also known as antimicrobial peptides, exhibit a wide range of activities contributing to immune responses and resolution of infections. CHDPs are expressed across diverse species, are generally amphipathic with less than 50 amino acids in length, and differ significantly in sequence and structure. This chapter focuses on the role of these peptides in immunity. CHDPs are known to function in both innate and adaptive immune responses. These peptides exert both pro- and anti-inflammatory properties, which are likely context dependent based on cell and tissue type, concentration of the peptides, and its interaction with other factors in the microenvironment. Furthermore, the crosstalk between CHDPs and the microbiome and how this may influence mucosal immunity is a rapidly emerging field of research. Overall, the immunomodulatory functions of CHDPs play an important role in the control of infections, regulation of inflammation, and maintaining immune homeostasis. It is thus not surprising that dysregulation of expression of CHDPs is implicated in the susceptibility, pathology, and progression of various diseases. In this chapter, we summarize the immunomodulatory functions of CHDPs, its clinical relevance, and the translational opportunities that these peptides provide for the development of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman AH, Pilat S, Law CW, Lynn DJ, Janot L, Mayer ML et al (2012) Effective adjunctive therapy by an innate defense regulatory Peptide in a preclinical model of severe malaria. Sci Transl Med 4(135):135ra64

    Article  PubMed  CAS  Google Scholar 

  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci U S A 92(1):195–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agerberth B, Grunewald J, Castanos-Velez E, Olsson B, Jornvall H, Wigzell H et al (1999) Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 160(1):283–290

    Article  CAS  PubMed  Google Scholar 

  • Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L et al (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96(9):3086–3093

    Article  CAS  PubMed  Google Scholar 

  • Agier J, Efenberger M, Brzezinska-Blaszczyk E (2015) Cathelicidin impact on inflammatory cells. Cent Eur J Immunol 40(2):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn JK, Huang B, Bae EK, Park EJ, Hwang JW, Lee J et al (2013) The role of alpha-defensin-1 and related signal transduction mechanisms in the production of IL-6, IL-8 and MMPs in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 52(8):1368–1376

    Article  CAS  Google Scholar 

  • Al-Mamun A, Mily A, Sarker P, Tiash S, Navarro A, Akter M et al (2013) Treatment with phenylbutyrate in a pre-clinical trial reduces diarrhea due to enteropathogenic Escherichia coli: link to cathelicidin induction. Microbes Infect 15(13):939–950

    Article  CAS  PubMed  Google Scholar 

  • Amatngalim GD, Schrumpf JA, Henic A, Dronkers E, Verhoosel RM, Ordonez SR et al (2017) Antibacterial defense of human airway epithelial cells from chronic obstructive pulmonary disease patients induced by acute exposure to nontypeable haemophilus influenzae: modulation by cigarette smoke. J Innate Immun 9(4):359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillet A, Trocme C, Berthier S, Arlotto M, Grange L, Chenau J et al (2010) Synovial fluid proteomic fingerprint: S100A8, S100A9 and S100A12 proteins discriminate rheumatoid arthritis from other inflammatory joint diseases. Rheumatology (Oxford) 49(4):671–682

    Article  CAS  Google Scholar 

  • Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95(16):9541–9546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM (1999) Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 67(11):6084–6089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J et al (2011) Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One 6(10):e25333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaumont PE, McHugh B, Gwyer Findlay E, Mackellar A, Mackenzie KJ, Gallo RL et al (2014) Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS One 9(6):e99029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beisswenger C, Kandler K, Hess C, Garn H, Felgentreff K, Wegmann M et al (2006) Allergic airway inflammation inhibits pulmonary antibacterial host defense. J Immunol 177(3):1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Bergman P, Johansson L, Asp V, Plant L, Gudmundsson GH, Jonsson AB et al (2005) Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell Microbiol 7(7):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Bokarewa MI, Jin T, Tarkowski A (2003) Intraarticular release and accumulation of defensins and bactericidal/permeability-increasing protein in patients with rheumatoid arthritis. J Rheumatol 30(8):1719–1724

    CAS  PubMed  Google Scholar 

  • Bowdish DM, Davidson DJ, Scott MG, Hancock RE (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49(5):1727–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracke S, Carretero M, Guerrero-Aspizua S, Desmet E, Illera N, Navarro M et al (2014) Targeted silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: development of siRNA SECosome-based novel therapies. Exp Dermatol 23(3):199–201

    Article  CAS  PubMed  Google Scholar 

  • Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR et al (2006) Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 103(5):1516–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucki R, Sostarecz AG, Byfield FJ, Savage PB, Janmey PA (2007) Resistance of the antibacterial agent ceragenin CSA-13 to inactivation by DNA or F-actin and its activity in cystic fibrosis sputum. J Antimicrob Chemother 60(3):535–545

    Article  CAS  PubMed  Google Scholar 

  • Bucki R, Leszczynska K, Namiot A, Sokolowski W (2010) Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp 58(1):15–25

    Article  CAS  Google Scholar 

  • Byfield FJ, Kowalski M, Cruz K, Leszczynska K, Namiot A, Savage PB et al (2011) Cathelicidin LL-37 increases lung epithelial cell stiffness, decreases transepithelial permeability, and prevents epithelial invasion by Pseudomonas aeruginosa. J Immunol 187(12):6402–6409

    Article  CAS  PubMed  Google Scholar 

  • Chen CI, Schaller-Bals S, Paul KP, Wahn U, Bals R (2004) Beta-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J Cyst Fibros 3(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Ho S, Yoo JH, Tran DH, Bakirtzi K, Su B et al (2015) Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts. Clin Exp Gastroenterol 8:13–29

    CAS  PubMed  Google Scholar 

  • Cherkasov A, Hilpert K, Jenssen H, Fjell CD, Waldbrook M, Mullaly SC et al (2009) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol 4(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ et al (1996) Identification of defensin-1, defensin-2 and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271:2935–2940

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Mookherjee N (2012) Multiple immune-modulatory functions of cathelicidin host defense peptides. Front Immunol 3:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi KY, Chow LN, Mookherjee N (2012) Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 4(4):361–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi KY, Napper S, Mookherjee N (2014) Human cathelicidin LL-37 and its derivative IG-19 regulate interleukin-32-induced inflammation. Immunology 143(1):68–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow LN, Choi KY, Piyadasa H, Bossert M, Uzonna J, Klonisch T et al (2014) Human cathelicidin LL-37-derived peptide IG-19 confers protection in a murine model of collagen-induced arthritis. Mol Immunol 57(2):86–92

    Article  CAS  PubMed  Google Scholar 

  • Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I et al (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12(6):636–641

    Article  CAS  PubMed  Google Scholar 

  • Chuang CM, Monie A, Wu A, Mao CP, Hung CF (2009) Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther 20(4):303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL et al (2009) The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 106(10):3806–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 368(1):173–176

    Article  CAS  PubMed  Google Scholar 

  • Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS et al (2015) Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347(6218):170–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie SM, Gwyer Findlay E, McFarlane AJ, Fitch PM, Bottcher B, Colegrave N et al (2016) Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol 196(6):2699–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC et al (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172(2):1146–1156

    Article  CAS  PubMed  Google Scholar 

  • de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI et al (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10(423):eaan4044

    Article  PubMed  CAS  Google Scholar 

  • De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27(18):1337–1347

    Article  PubMed  CAS  Google Scholar 

  • De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192(7):1069–1074

    Article  Google Scholar 

  • Deslouches B, Di YP (2017) Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 8(28):46635–46651

    Article  PubMed  PubMed Central  Google Scholar 

  • Donald CD, Sun CQ, Lim SD, Macoska J, Cohen C, Amin MB et al (2003) Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas. Lab Investig 83(4):501–505

    Article  CAS  PubMed  Google Scholar 

  • Doss M, White MR, Tecle T, Hartshorn KL (2010) Human defensins and LL-37 in mucosal immunity. J Leukoc Biol 87(1):79–92

    Article  CAS  PubMed  Google Scholar 

  • Duplantier AJ, van Hoek ML (2013) The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol 4:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462(1–2):11–28

    Article  CAS  PubMed  Google Scholar 

  • Favilli F, Anzilotti C, Martinelli L, Quattroni P, De Martino S, Pratesi F et al (2009) IL-18 activity in systemic lupus erythematosus. Ann N Y Acad Sci 1173:301–309

    Article  CAS  PubMed  Google Scholar 

  • Fernandez de Caleya R, Gonzalez-Pascual B, Garcia-Olmedo F, Carbonero P (1972) Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23(5):998–1000

    Article  CAS  PubMed  Google Scholar 

  • Fischer N, Sechet E, Friedman R, Amiot A, Sobhani I, Nigro G et al (2016) Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge. Proc Natl Acad Sci U S A 113(21):E2993–E3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H et al (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272(24):15258–15263

    Article  CAS  PubMed  Google Scholar 

  • Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV et al (2007) Human -defensin-3 activates professional antigen-presenting cells via toll-like receptors 1 and 2. Proc Natl Acad Sci U S A 104(47):18631–18635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz T (2003a) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2003b) The role of antimicrobial peptides in innate immunity. Integr Comp Biol 43(2):300–304

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76(4):1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590

    Article  CAS  PubMed  Google Scholar 

  • Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19(9):1067–1077

    Article  CAS  PubMed  Google Scholar 

  • Gordon YJ, Huang LC, Romanowski EG, Yates KA, Proske RJ, McDermott AM (2005) Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30(5):385–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronberg A, Mahlapuu M, Stahle M, Whately-Smith C, Rollman O (2014) Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen 22(5):613–621

    Article  PubMed  Google Scholar 

  • Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238(2):325–332

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Rosoha E, Lowry MB, Borregaard N, Gombart AF (2013) Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway. J Nutr Biochem 24(5):754–759

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Wang R, Sun C, Jin X, Liu D, Zhao X et al (2014) Human beta-defensin-1 suppresses tumor migration and invasion and is an independent predictor for survival of oral squamous cell carcinoma patients. PLoS One 9(3):e91867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanaoka Y, Yamaguchi Y, Yamamoto H, Ishii M, Nagase T, Kurihara H et al (2016) In vitro and in vivo anticancer activity of human beta-defensin-3 and its mouse homolog. Anticancer Res 36(11):5999–6004

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10(4):243–254

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16(5):321–334

    Article  CAS  PubMed  Google Scholar 

  • Haney EF, Mansour SC, Hilchie AL, de la Fuente-Nunez C, Hancock RE (2015) High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides 71:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276(8):5707–5713

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schroder JM (2004) Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 123(3):522–529

    Article  CAS  PubMed  Google Scholar 

  • Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF (2002) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70(2):953–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto S, Uto H, Kanmura S, Sakiyama T, Oku M, Iwashita Y et al (2012) Human neutrophil peptide-1 aggravates dextran sulfate sodium-induced colitis. Inflamm Bowel Dis 18(4):667–675

    Article  PubMed  Google Scholar 

  • Heilborn JD, Nilsson MF, Jimenez CI, Sandstedt B, Borregaard N, Tham E et al (2005) Antimicrobial protein hCAP18/LL-37 is highly expressed in breast cancer and is a putative growth factor for epithelial cells. Int J Cancer 114(5):713–719

    Article  CAS  PubMed  Google Scholar 

  • Hemshekhar M, Anaparti V, Mookherjee N (2016) Functions of cationic host defense peptides in immunity. Pharmaceuticals (Basel) 9(3):40

    Article  CAS  Google Scholar 

  • Hensel JA, Chanda D, Kumar S, Sawant A, Grizzle WE, Siegal GP et al (2011) LL-37 as a therapeutic target for late stage prostate cancer. Prostate 71(6):659–670

    Article  CAS  PubMed  Google Scholar 

  • Herr C, Beisswenger C, Hess C, Kandler K, Suttorp N, Welte T et al (2009) Suppression of pulmonary innate host defence in smokers. Thorax 64(2):144–149

    Article  CAS  PubMed  Google Scholar 

  • Hiemstra PS (2015) Parallel activities and interactions between antimicrobial peptides and complement in host defense at the airway epithelial surface. Mol Immunol 68(1):28–30

    Article  CAS  PubMed  Google Scholar 

  • Hiemstra PS, Amatngalim GD, van der Does AM, Taube C (2016) Antimicrobial peptides and innate lung defenses: role in infectious and noninfectious lung diseases and therapeutic applications. Chest 149(2):545–551

    Article  PubMed  Google Scholar 

  • Hilpert K, Volkmer-Engert R, Walter T, Hancock RE (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 23(8):1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Hilpert K, Elliott MR, Volkmer-Engert R, Henklein P, Donini O, Zhou Q et al (2006) Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol 13(10):1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Hirsch T, Jacobsen F, Steinau HU, Steinstraesser L (2008) Host defense peptides and the new line of defence against multiresistant infections. Protein Pept Lett 15(3):238–243

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann MH, Bruns H, Backdahl L, Neregard P, Niederreiter B, Herrmann M et al (2013) The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats. Ann Rheum Dis 72(7):1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D et al (2008) Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 40(1):23–25

    Article  CAS  PubMed  Google Scholar 

  • Holterman DA, Diaz JI, Blackmore PF, Davis JW, Schellhammer PF, Corica A et al (2006) Overexpression of alpha-defensin is associated with bladder cancer invasiveness. Urol Oncol 24(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Hong SA, Kim KH, Lee TJ, Park ES, Kim MK, Myung SC (2017) A role of human beta defensin-1 in predicting prostatic adenocarcinoma in cases of false-negative biopsy. APMIS 125(12):1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Hoppe T, Kraus D, Novak N, Probstmeier R, Frentzen M, Wenghoefer M et al (2016) Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins. Tumour Biol 37(10):13789–13798

    Article  CAS  PubMed  Google Scholar 

  • Hosoda H, Nakamura K, Hu Z, Tamura H, Reich J, Kuwahara-Arai K et al (2017) Antimicrobial cathelicidin peptide LL37 induces NET formation and suppresses the inflammatory response in a mouse septic model. Mol Med Rep 16(4):5618–5626

    Article  CAS  PubMed  Google Scholar 

  • Hou M, Zhang N, Yang J, Meng X, Yang R, Li J et al (2013) Antimicrobial peptide LL-37 and IDR-1 ameliorate MRSA pneumonia in vivo. Cell Physiol Biochem 32(3):614–623

    Article  CAS  PubMed  Google Scholar 

  • Hultmark D, Engstrom A, Bennich H, Kapur R, Boman HG (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127(1):207–217

    Article  CAS  PubMed  Google Scholar 

  • Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B et al (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7(2):180–185

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zheng Y, Wang W, Shao Y, Li Z, Wang Q et al (2017) Antimicrobial peptide LL-37 promotes YB-1 expression, and the viability, migration and invasion of malignant melanoma cells. Mol Med Rep 15(1):240–248

    Article  CAS  PubMed  Google Scholar 

  • Joly S, Compton LM, Pujol C, Kurago ZB, Guthmiller JM (2009) Loss of human beta-defensin 1, 2, and 3 expression in oral squamous cell carcinoma. Oral Microbiol Immunol 24(5):353–360

    Article  CAS  PubMed  Google Scholar 

  • Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267(32):23216–23225

    Article  CAS  PubMed  Google Scholar 

  • Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315(2):187–192

    Article  CAS  PubMed  Google Scholar 

  • Jones EA, Kananurak A, Bevins CL, Hollox EJ, Bakaletz LO (2014) Copy number variation of the beta defensin gene cluster on chromosome 8p influences the bacterial microbiota within the nasopharynx of otitis-prone children. PLoS One 9(5):e98269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joo HS, Fu CI, Otto M (2016) Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 371(1695):20150292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joseph G, Tarnow L, Astrup AS, Hansen TK, Parving HH, Flyvbjerg A et al (2008) Plasma alpha-defensin is associated with cardiovascular morbidity and mortality in type 1 diabetic patients. J Clin Endocrinol Metab 93(4):1470–1475

    Article  CAS  PubMed  Google Scholar 

  • Kahlenberg JM, Kaplan MJ (2013) Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol 191(10):4895–4901

    Article  CAS  PubMed  Google Scholar 

  • Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ (2013) Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190(3):1217–1226

    Article  CAS  PubMed  Google Scholar 

  • Kaneda Y, Yamaai T, Mizukawa N, Nagatsuka H, Yamachika E, Gunduz M et al (2009) Localization of antimicrobial peptides human beta-defensins in minor salivary glands with Sjogren’s syndrome. Eur J Oral Sci 117(5):506–510

    Article  CAS  PubMed  Google Scholar 

  • Kaplan CW, Sim JH, Shah KR, Kolesnikova-Kaplan A, Shi W, Eckert R (2011) Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother 55(7):3446–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesting MR, Loeffelbein DJ, Hasler RJ, Wolff KD, Rittig A, Schulte M et al (2009) Expression profile of human beta-defensin 3 in oral squamous cell carcinoma. Cancer Investig 27(5):575–581

    Article  CAS  Google Scholar 

  • Kesting MR, Stoeckelhuber M, Kuppek A, Hasler R, Rohleder N, Wolff KD et al (2012) Human beta-defensins and psoriasin/S100A7 expression in salivary glands: anti-oncogenic molecules for potential therapeutic approaches. BioDrugs 26(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Kienhofer D, Hahn J, Schubert I, Reinwald C, Ipseiz N, Lang SC et al (2014) No evidence of pathogenic involvement of cathelicidins in patient cohorts and mouse models of lupus and arthritis. PLoS One 9(12):e115474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JE, Kim HJ, Choi JM, Lee KH, Kim TY, Cho BK et al (2010) The antimicrobial peptide human cationic antimicrobial protein-18/cathelicidin LL-37 as a putative growth factor for malignant melanoma. Br J Dermatol 163(5):959–967

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Yang IY, Kim J, Lee KY, Jang YS (2015) Antimicrobial peptide LL-37 promotes antigen-specific immune responses in mice by enhancing Th17-skewed mucosal and systemic immunities. Eur J Immunol 45(5):1402–1413

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim YN, Jang YS (2017) Cutting edge: LL-37-mediated formyl peptide Receptor-2 signaling in follicular dendritic cells contributes to B cell activation in Peyer’s patch germinal centers. J Immunol 198(2):629–633

    Article  CAS  PubMed  Google Scholar 

  • King AE, Fleming DC, Critchley HO, Kelly RW (2003) Differential expression of the natural antimicrobials, beta-defensins 3 and 4, in human endometrium. J Reprod Immunol 59(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Kopfnagel V, Harder J, Werfel T (2013) Expression of antimicrobial peptides in atopic dermatitis and possible immunoregulatory functions. Curr Opin Allergy Clin Immunol 13(5):531–536

    Article  CAS  PubMed  Google Scholar 

  • Kreuter A, Jaouhar M, Skrygan M, Tigges C, Stucker M, Altmeyer P et al (2011) Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus. J Am Acad Dermatol 65(1):125–133

    Article  CAS  PubMed  Google Scholar 

  • Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol 174(10):6257–6265

    Article  CAS  PubMed  Google Scholar 

  • Kuwano K, Tanaka N, Shimizu T, Kida Y (2006) Antimicrobial activity of inducible human beta defensin-2 against mycoplasma pneumoniae. Curr Microbiol 52(6):435–438

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19

    Article  PubMed  PubMed Central  Google Scholar 

  • Larrick JW, Hirata M, Zhong J, Wright SC (1995) Anti-microbial activity of human CAP18 peptides. Immunotechnology 1(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Laube DM, Yim S, Ryan LK, Kisich KO, Diamond G (2006) Antimicrobial peptides in the airway. Curr Top Microbiol Immunol 306:153–182

    CAS  PubMed  Google Scholar 

  • Lehouck A, Mathieu C, Carremans C, Baeke F, Verhaegen J, Van Eldere J et al (2012) High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease. Ann Intern Med 156(2):105–114

    Article  PubMed  Google Scholar 

  • Li HN, Barlow PG, Bylund J, Mackellar A, Bjorstad A, Conlon J et al (2009) Secondary necrosis of apoptotic neutrophils induced by the human cathelicidin LL-37 is not proinflammatory to phagocytosing macrophages. J Leukoc Biol 86(4):891–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisanby MW, Swiecki MK, Dizon BL, Pflughoeft KJ, Koehler TM, Kearney JF (2008) Cathelicidin administration protects mice from Bacillus anthracis spore challenge. J Immunol 181(7):4989–5000

    Article  CAS  PubMed  Google Scholar 

  • Luciano N, Valentini V, Calabro A, Elefante E, Vitale A, Baldini C et al (2015) One year in review 2015: Sjogren’s syndrome. Clin Exp Rheumatol 33(2):259–271

    PubMed  Google Scholar 

  • Mader JS, Mookherjee N, Hancock RE, Bleackley RC (2009) The human host defense peptide LL-37 induces apoptosis in a calpain- and apoptosis-inducing factor-dependent manner involving Bax activity. Mol Cancer Res 7(5):689–702

    Article  CAS  PubMed  Google Scholar 

  • Malinovschi A, Masoero M, Bellocchia M, Ciuffreda A, Solidoro P, Mattei A et al (2014) Severe vitamin D deficiency is associated with frequent exacerbations and hospitalization in COPD patients. Respir Res 15:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mallia P, Footitt J, Sotero R, Jepson A, Contoli M, Trujillo-Torralbo MB et al (2012) Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186(11):1117–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangoni ML, McDermott AM, Zasloff M (2016) Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 25(3):167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martineau AR, James WY, Hooper RL, Barnes NC, Jolliffe DA, Greiller CL et al (2015) Vitamin D3 supplementation in patients with chronic obstructive pulmonary disease (ViDiCO): a multicentre, double-blind, randomised controlled trial. Lancet Respir Med 3(2):120–130

    Article  CAS  PubMed  Google Scholar 

  • Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J et al (2018) Commensal microbiota modulate gene expression in the skin. Microbiome 6(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  • Melle C, Ernst G, Schimmel B, Bleul A, Thieme H, Kaufmann R et al (2005) Discovery and identification of alpha-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology 129(1):66–73

    Article  CAS  PubMed  Google Scholar 

  • Merkel D, Rist W, Seither P, Weith A, Lenter MC (2005) Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Proteomics 5(11):2972–2980

    Article  CAS  PubMed  Google Scholar 

  • Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE, Davidson DJ et al (2009) Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol 183(3):2122–2132

    Article  CAS  PubMed  Google Scholar 

  • Mily A, Rekha RS, Kamal SM, Arifuzzaman AS, Rahim Z, Khan L et al (2015) Significant effects of oral phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: a randomized controlled trial. PLoS One 10(9):e0138340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miraglia E, Nylen F, Johansson K, Arner E, Cebula M, Farmand S et al (2016) Entinostat up-regulates the CAMP gene encoding LL-37 via activation of STAT3 and HIF-1alpha transcription factors. Sci Rep 6:33274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molhoek EM, den Hertog AL, de Vries AM, Nazmi K, Veerman EC, Hartgers FC et al (2009) Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol Chem 390(4):295–303

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee N, Hancock RE (2007) Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 64(7–8):922–933

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K et al (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176(4):2455–2464

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee N, Hamill P, Gardy J, Blimkie D, Falsafi R, Chikatamarla A et al (2009) Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Mol BioSyst 5(5):483–496

    Article  CAS  PubMed  Google Scholar 

  • Muller CA, Markovic-Lipkovski J, Klatt T, Gamper J, Schwarz G, Beck H et al (2002) Human alpha-defensins HNPs-1, -2, and -3 in renal cell carcinoma: influences on tumor cell proliferation. Am J Pathol 160(4):1311–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119(5):1090–1095

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172(5):3070–3077

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J Immunol 176(5):3044–3052

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S et al (1988) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263(32):16709–16713

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T et al (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9(378):eaah4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nell MJ, Tjabringa GS, Vonk MJ, Hiemstra PS, Grote JJ (2004) Bacterial products increase expression of the human cathelicidin hCAP-18/LL-37 in cultured human sinus epithelial cells. FEMS Immunol Med Microbiol 42(2):225–231

    Article  CAS  PubMed  Google Scholar 

  • Nemeth BC, Varkonyi T, Somogyvari F, Lengyel C, Fehertemplomi K, Nyiraty S et al (2014) Relevance of alpha-defensins (HNP1-3) and defensin beta-1 in diabetes. World J Gastroenterol 20(27):9128–9137

    PubMed  PubMed Central  Google Scholar 

  • Neumann A, Berends ET, Nerlich A, Molhoek EM, Gallo RL, Meerloo T et al (2014) The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J 464(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Nijnik A, Madera L, Ma S, Waldbrook M, Elliott MR, Easton DM et al (2010) Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol 184(5):2539–2550

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Madera L, Afacan N, Okumura K, Ogawa H, Hancock RE (2013) The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modulate human neutrophil functions. J Leukoc Biol 94(1):159–170

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H (2017) Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol 26(11):989–998

    Article  CAS  PubMed  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA et al (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414(6862):454–457

    Article  CAS  PubMed  Google Scholar 

  • Obata-Onai A, Hashimoto S, Onai N, Kurachi M, Nagai S, Shizuno K et al (2002) Comprehensive gene expression analysis of human NK cells and CD8(+) T lymphocytes. Int Immunol 14(10):1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Okrent DG, Lichtenstein AK, Ganz T (1990) Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am Rev Respir Dis 141(1):179–185

    Article  CAS  PubMed  Google Scholar 

  • Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T et al (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Ostaff MJ, Stange EF, Wehkamp J (2013) Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med 5(10):1465–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace E, Ferraro M, Minervini MI, Vitulo P, Pipitone L, Chiappara G et al (2012) Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients. PLoS One 7(3):e33601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paone G, Conti V, Vestri A, Leone A, Puglisi G, Benassi F et al (2011) Analysis of sputum markers in the evaluation of lung inflammation and functional impairment in symptomatic smokers and COPD patients. Dis Markers 31(2):91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park K, Elias PM, Oda Y, Mackenzie D, Mauro T, Holleran WM et al (2011) Regulation of cathelicidin antimicrobial peptide expression by an endoplasmic reticulum (ER) stress signaling, vitamin D receptor-independent pathway. J Biol Chem 286(39):34121–34130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson LJ, Aanerud M, Hardie JA, Miodini Nilsen R, Bakke PS, Eagan TM et al (2017) Antimicrobial peptide levels are linked to airway inflammation, bacterial colonisation and exacerbations in chronic obstructive pulmonary disease. Eur Respir J 49(3):1601328

    Article  PubMed  CAS  Google Scholar 

  • Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO et al (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan TK, Lay FT, Poon IK, Hinds MG, Kvansakul M, Hulett MD (2016) Human beta-defensin 3 contains an oncolytic motif that binds PI(4,5)P2 to mediate tumour cell permeabilisation. Oncotarget 7(2):2054–2069

    Article  PubMed  Google Scholar 

  • Piyadasa H, Hemshekhar M, Altieri A, Basu S, van der Does AM, Halayko AJ et al (2018a) Immunomodulatory innate defence regulator (IDR) peptide alleviates airway inflammation and hyper-responsiveness. Thorax. https://doi.org/10.1136/thoraxjnl-2017-210739. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  • Piyadasa H, Hemshekhar M, Carlsten C, Mookherjee N (2018b) Inhaled diesel exhaust decreases the antimicrobial peptides alpha-Defensin and S100A7 in human bronchial secretions. Am J Respir Crit Care Med 197(10):1358–1361

    Article  CAS  PubMed  Google Scholar 

  • Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691

    Article  CAS  PubMed  Google Scholar 

  • Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP et al (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152(5):1247–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radic M (2014) Clearance of apoptotic bodies, NETs, and biofilm DNA: implications for autoimmunity. Front Immunol 5:365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raqib R, Sarker P, Mily A, Alam NH, Arifuzzaman AS, Rekha RS et al (2012) Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial. BMC Infect Dis 12:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehaume LM, Hancock RE (2008) Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol 28(3):185–200

    Article  CAS  PubMed  Google Scholar 

  • Rekha RS, Rao Muvva SS, Wan M, Raqib R, Bergman P, Brighenti S et al (2015) Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages. Autophagy 11(9):1688–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren SX, Cheng AS, To KF, Tong JH, Li MS, Shen J et al (2012) Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res 72(24):6512–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-Santiago B, Castaneda-Delgado JE, Rivas Santiago CE, Waldbrook M, Gonzalez-Curiel I, Leon-Contreras JC et al (2013) Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis infections in animal models. PLoS One 8(3):e59119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Jimenez FJ, Krause A, Schulz S, Forssmann WG, Conejo-Garcia JR, Schreeb R et al (2003) Distribution of new human beta-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics 81(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Rohde G, Message SD, Haas JJ, Kebadze T, Parker H, Laza-Stanca V et al (2014) CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations. Clin Exp Allergy 44(7):930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudi R, Syn NL, Roudbary M (2017) Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol 8:1320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Saraheimo M, Forsblom C, Pettersson-Fernholm K, Flyvbjerg A, Groop PH, Frystyk J (2008) Increased levels of alpha-defensin (−1, −2 and −3) in type 1 diabetic patients with nephropathy. Nephrol Dial Transplant 23(3):914–918

    Article  CAS  PubMed  Google Scholar 

  • Schauber J, Svanholm C, Termen S, Iffland K, Menzel T, Scheppach W et al (2003) Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 52(5):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauber J, Iffland K, Frisch S, Kudlich T, Schmausser B, Eck M et al (2004) Histone-deacetylase inhibitors induce the cathelicidin LL-37 in gastrointestinal cells. Mol Immunol 41(9):847–854

    Article  CAS  PubMed  Google Scholar 

  • Scott MG, Vreugdenhil AC, Buurman WA, Hancock RE, Gold MR (2000) Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol 164(2):549–553

    Article  CAS  PubMed  Google Scholar 

  • Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169(7):3883–3891

    Article  CAS  PubMed  Google Scholar 

  • Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A et al (2007) An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25(4):465–472

    Article  CAS  PubMed  Google Scholar 

  • Seil MN, Nagant C, Dehaye J-P, Vandenbranden M, Lensink MF (2010) Spotlight on human LL-37, an immunomodulatory peptide with promising cell-penetrating properties. Pharmaceuticals (Basel) 3(11):3435–3460

    Article  CAS  Google Scholar 

  • Sharma S, Verma I, Khuller GK (2001) Therapeutic potential of human neutrophil peptide 1 against experimental tuberculosis. Antimicrob Agents Chemother 45(2):639–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B et al (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra JM, Fuste E, Rabanal F, Vinuesa T, Vinas M (2017) An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther 17(6):663–676

    Article  PubMed  Google Scholar 

  • Simmaco M, Mignogna G, Barra D, Bossa F (1993) Novel antimicrobial peptides from skin secretion of the European frog Rana esculenta. FEBS Lett 324(2):159–161

    Article  CAS  PubMed  Google Scholar 

  • Simmaco M, Mignogna G, Canofeni S, Miele R, Mangoni ML, Barra D (1996) Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem 242(3):788–792

    Article  CAS  PubMed  Google Scholar 

  • Simmaco M, Kreil G, Barra D (2009) Bombinins, antimicrobial peptides from Bombina species. Biochim Biophys Acta 1788(8):1551–1555

    Article  CAS  PubMed  Google Scholar 

  • Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS et al (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97(12):3951–3959

    Article  CAS  PubMed  Google Scholar 

  • Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N (2003) Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 170(11):5583–5589

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820):246–248

    Article  CAS  PubMed  Google Scholar 

  • Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53(12):5127–5133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinstraesser L, Hirsch T, Schulte M, Kueckelhaus M, Jacobsen F, Mersch EA et al (2012) Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 7(8):e39373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sthoeger ZM, Bezalel S, Chapnik N, Asher I, Froy O (2009) High alpha-defensin levels in patients with systemic lupus erythematosus. Immunology 127(1):116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone VN, Xu P (2017) Targeted antimicrobial therapy in the microbiome era. Mol Oral Microbiol 32(6):446–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez-Carmona M, Hubert P, Delvenne P, Herfs M (2015) Defensins: “simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev 26(3):361–370

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L et al (2015) Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43(2):304–317

    Article  CAS  PubMed  Google Scholar 

  • Supanchart C, Thawanaphong S, Makeudom A, Bolscher JG, Nazmi K, Kornak U et al (2012) The antimicrobial peptide, LL-37, inhibits in vitro osteoclastogenesis. J Dent Res 91(11):1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Tewary P, de la Rosa G, Sharma N, Rodriguez LG, Tarasov SG, Howard OM et al (2013) Beta-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-alpha production by human plasmacytoid dendritic cells, and promote inflammation. J Immunol 191(2):865–874

    Article  CAS  PubMed  Google Scholar 

  • Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS (2006) Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol 140(2):103–112

    Article  CAS  PubMed  Google Scholar 

  • Tomasinsig L, Zanetti M (2005) The cathelicidins – structure, function and evolution. Curr Protein Pept Sci 6(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Tongaonkar P, Golji AE, Tran P, Ouellette AJ, Selsted ME (2012) High fidelity processing and activation of the human alpha-defensin HNP1 precursor by neutrophil elastase and proteinase 3. PLoS One 7(3):e32469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner-Brannen E, Choi KY, Lippert DN, Cortens JP, Hancock RE, El-Gabalawy H et al (2011) Modulation of interleukin-1beta-induced inflammatory responses by a synthetic cationic innate defence regulator peptide, IDR-1002, in synovial fibroblasts. Arthritis Res Ther 13(4):R129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraki S, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Ogura S et al (2015) Corrigendum: human beta-defensin-3 inhibits migration of colon cancer cells via downregulation of metastasis-associated 1 family, member 2 expression. Int J Oncol 46(4):1858

    Article  CAS  PubMed  Google Scholar 

  • Valore EV, Ganz T (1992) Posttranslational processing of defensins in immature human myeloid cells. Blood 79(6):1538–1544

    Article  CAS  PubMed  Google Scholar 

  • van der Does AM, Beekhuizen H, Ravensbergen B, Vos T, Ottenhoff THM, van Dissel JT et al (2010) LL-37 directs macrophage differentiation toward macrophages with a Proinflammatory signature. J Immunol 185(3):1442–1449

    Article  PubMed  CAS  Google Scholar 

  • Van Wetering S, Mannesse-Lazeroms SPG, Van Sterkenburg MAJA, Daha MR, Dijkman JH, Hiemstra PS (1997) Effect of defensins on IL-8 synthesis in airway epithelial cells. Am J Physiol (Lung Cell Mol Physiol) 272(16):L888–LL96

    Article  Google Scholar 

  • Varoga D, Paulsen FP, Kohrs S, Grohmann S, Lippross S, Mentlein R et al (2006) Expression and regulation of human beta-defensin-2 in osteoarthritic cartilage. J Pathol 209(2):166–173

    Article  CAS  PubMed  Google Scholar 

  • Varoga D, Klostermeier E, Paulsen F, Wruck C, Lippross S, Brandenburg LO et al (2009) The antimicrobial peptide HBD-2 and the toll-like receptors-2 and -4 are induced in synovial membranes in case of septic arthritis. Virchows Arch 454(6):685–694

    Article  CAS  PubMed  Google Scholar 

  • von Haussen J, Koczulla R, Shaykhiev R, Herr C, Pinkenburg O, Reimer D et al (2008) The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 59(1):12–23

    Article  Google Scholar 

  • Vordenbaumen S, Fischer-Betz R, Timm D, Sander O, Chehab G, Richter J et al (2010) Elevated levels of human beta-defensin 2 and human neutrophil peptides in systemic lupus erythematosus. Lupus 19(14):1648–1653

    Article  CAS  PubMed  Google Scholar 

  • Vragniau C, Hubner JM, Beidler P, Gil S, Saydaminova K, Lu ZZ et al (2017) Studies on the interaction of tumor-derived HD5 alpha defensins with adenoviruses and implications for oncolytic adenovirus therapy. J Virol 91(6):e02030–e02016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan M, van der Does AM, Tang X, Lindbom L, Agerberth B, Haeggstrom JZ (2014) Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J Leukoc Biol 95(6):971–981

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang JH, Baskaran H, Wang R, Jurevic R (2012) Effect of human beta-defensin-3 on head and neck cancer cell migration using micro-fabricated cell islands. Head Neck Oncol 4:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Mishra B, Epand RF, Epand RM (2014) High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim Biophys Acta 1838(9):2160–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093

    Article  CAS  PubMed  Google Scholar 

  • Weber G, Chamorro CI, Granath F, Liljegren A, Zreika S, Saidak Z et al (2009) Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res: BCR 11(1):R6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Welling MM, Hiemstra PS, van den Barselaar MT, Paulusma-Annema A, Nibbering PH, Pauwels EK et al (1998) Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J Clin Invest 102(8):1583–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL et al (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286(5437):113–117

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Kraus D, Reckenbeil J, Probstmeier R (2016) Oncogenic relevant defensins: expression pattern and proliferation characteristics of human tumor cell lines. Tumour Biol 37(6):7959–7966

    Article  CAS  PubMed  Google Scholar 

  • Woo JS, Jeong JY, Hwang YJ, Chae SW, Hwang SJ, Lee HM (2003) Expression of cathelicidin in human salivary glands. Arch Otolaryngol Head Neck Surg 129(2):211–214

    Article  PubMed  Google Scholar 

  • Wu WK, Sung JJ, To KF, Yu L, Li HT, Li ZJ et al (2010) The host defense peptide LL-37 activates the tumor-suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol 223(1):178–186

    CAS  PubMed  Google Scholar 

  • Xu WD, Zhang M, Feng CC, Yang XK, Pan HF, Ye DQ (2013) IL-32 with potential insights into rheumatoid arthritis. Clin Immunol 147(2):89–94

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Nagase T, Makita R, Fukuhara S, Tomita T, Tominaga T et al (2002) Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice. J Immunol 169(5):2516–2523

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM et al (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20(12):2068–2080

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J et al (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utlizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192(7):1069–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung AT, Gellatly SL, Hancock RE (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68(13):2161–2176

    Article  CAS  PubMed  Google Scholar 

  • Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G (2007) Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J Cyst Fibros 6(6):403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Yu FS (2010) LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas. Invest Ophthalmol Vis Sci 51(4):1891–1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84(15):5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Cherryholmes G, Shively JE (2008) Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. J Leukoc Biol 84(3):780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Cherryholmes G, Chang F, Rose DM, Schraufstatter I, Shively JE (2009) Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur J Immunol 39(11):3181–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen F, Wu W, Sun M, Bilotta AJ, Yao S et al (2018) GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol 11(3):752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

AD is supported by an EU Marie Curie Global Fellowship (#748569). Studies in the laboratory of PSH on CHDPs are supported by grants from the Lung Foundation Netherlands, the Eurostars program, The Netherlands Organisation for Health Research and Development (ZonMw), and Galapagos NV. NM is supported by Canadian Institutes of Health Research (CIHR) and Natural Sciences and Engineering Research Council of Canada (NSERC) for peptide research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeloffer Mookherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Does, A.M., Hiemstra, P.S., Mookherjee, N. (2019). Antimicrobial Host Defence Peptides: Immunomodulatory Functions and Translational Prospects. In: Matsuzaki, K. (eds) Antimicrobial Peptides. Advances in Experimental Medicine and Biology, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-13-3588-4_10

Download citation

Publish with us

Policies and ethics