Skip to main content

Advertisement

Log in

The antimicrobial peptide HBD-2 and the Toll-like receptors-2 and -4 are induced in synovial membranes in case of septic arthritis

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Septic arthritis is frequently observed especially in immune-compromised or chronically diseased patients and leads to functional impairment due to tissue destruction. Recently, production of antimicrobial peptides (AMP) was observed in articular cartilage after exposure to bacteria. This report examines the role of synoviocyte-derived AMPs in innate defense mechanisms of articular joints. Samples of healthy, low-grade synovialitis and septic synovial membranes were assessed for the expression of human β-defensin-2 (HBD-2) and Toll-like receptor-2 and -4 (TLR) by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). A stable synoviocyte line (K4IM) was used for in vitro experiments and assayed for endogenous HBD-2 and TLR production after exposure to inflammatory cytokines or bacterial supernatants by reverse transcription polymerase chain reaction (RT-PCR), real-time RT-PCR, Western blot, ELISA, and dual luciferase assay. Healthy human synovial membranes and cultured synoviocytes are able to produce HBD-2 and TLR-1–5 at basal expression levels. Samples of bacteria-colonized synovial membranes produce higher levels of HBD-2 when compared with samples of healthy tissues. K4IM synoviocytes exposed to Staphylococcus aureus, Pseudomonas aeruginosa, or proinflammatory cytokines demonstrated a clear HBD-2 transcription and protein induction. TLR-2 and -4 are known to have a critical role in the recognition of gram-positive and gram-negative bacteria in epithelia and are induced in mesenchymal synoviocytes after bacterial exposure on transcription and on protein level. This report demonstrates an unappreciated role of synovial membranes: samples of septic synovial membranes and cultured synoviocytes exposed to bacteria produce increased amounts of the AMP HBD-2 and the bacteria recognition receptors TLR-2 and -4. The induction of anti-inflammatory pathways in infected synoviocytes suggests involvement in intra-articular defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldenberg DL (1999) Septic arthritis. Lancet 351:197–202

    Article  Google Scholar 

  2. Ross JJ (2005) Septic arthritis. Infect Dis Clin North Am 4:799–817

    Article  Google Scholar 

  3. Jasin HE (1983) Bacterial lipopolysaccharides induce in-vitro degradation of cartilage matrix through chondrocyte activation. J Clin Invest 72:2014–2019

    Article  PubMed  CAS  Google Scholar 

  4. Deng GM, Verdrengh M, Liu ZQ et al (2000) The major role of macrophages and their product tumor necrosis factor alpha in the induction of arthritis triggered by bacterial DNA containing CpG motifs. Arthritis Rheum 43:2283–2289

    Article  PubMed  CAS  Google Scholar 

  5. Hsieh YS, Yang SF, Lue KH et al (2006) Clinical correlation with the PA/plasmin system in septic arthritis of the knee. Clin Orthop Relat Res 447:172–178

    Article  PubMed  Google Scholar 

  6. Castor CW (1960) The microscopic structure of normal human synovial tissue. Arthritis Rheum 3:140–151

    Article  PubMed  CAS  Google Scholar 

  7. Barland P, Novikoff AB, Hamerman D (1962) Electron microscopy of the human synovial membrane. J Cell Biol 14:207–220

    Article  PubMed  CAS  Google Scholar 

  8. Wilkinson LS, Pitsillides AA, Worrall JG et al (1992) Light microscopic characterization of the fibroblast-like synovial intimal cell (synoviocyte). Arthritis Rheum 35:1179–1184

    Article  PubMed  CAS  Google Scholar 

  9. Stevens CR, Mapp PI, Revell PA (1990) A monoclonal antibody (Mab 67) marks type B synoviocytes. Rheumatol Int 10:103–106

    Article  PubMed  CAS  Google Scholar 

  10. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  11. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  12. Harder J, Bartels J, Christophers E et al (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  PubMed  CAS  Google Scholar 

  13. Valore EV, Park CH, Quale AJ et al (1998) Human β-defensin-1: an antimicrobial peptide of urogenital tissue. J Clin Invest 101:1633–1642

    Article  PubMed  CAS  Google Scholar 

  14. Harder J, Bartels J, Christophers E et al (2001) Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  PubMed  CAS  Google Scholar 

  15. Garcia JR, Krause A, Schulz S et al (2001) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 15:1819–1821

    PubMed  CAS  Google Scholar 

  16. Garcia JR, Jaumann F, Schulz S et al (2001) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306:257–264

    Article  PubMed  CAS  Google Scholar 

  17. Salzman NH, Ghosh D, Huttner KM et al (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526

    Article  PubMed  CAS  Google Scholar 

  18. Nizet V, Ohtake T, Lauth X et al (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    Article  PubMed  CAS  Google Scholar 

  19. Muzio M, Polentarutti N, Bosisio D et al (2000) Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J Leukoc Biol 67:450–455

    PubMed  CAS  Google Scholar 

  20. Mushegian A, Medzhitov R (2001) Evolutionary perspective on innate immune recognition. J Cell Biol 155:705–711

    Article  PubMed  CAS  Google Scholar 

  21. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–678

    Article  PubMed  CAS  Google Scholar 

  22. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979

    Article  PubMed  CAS  Google Scholar 

  23. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki M, Hisamatsu T, Podolsky K (2003) Y interferon augments intracellular pathway for LPS recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular TLR-4-MD-2 complex. Infect Immun 71:3503–3511

    Article  PubMed  CAS  Google Scholar 

  25. Paulsen F, Pufe T, Petersen W et al (2001) Expression of natural peptide antibiotics in human articular cartilage and synovial membrane. Clin Diagn Lab Immunol 8:1021–1023

    PubMed  CAS  Google Scholar 

  26. Paulsen F, Pufe T, Conradi L et al (2002) Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol 198:369–377

    Article  PubMed  CAS  Google Scholar 

  27. Haas C, Aicher WK, Dinkel A et al (1997) Characterization of SV40T antigen immortalized human synovial fibroblasts: maintained expression patterns of EGR-1, HLA-DR and some surface receptors. Rheumatol Int 16:241–247

    Article  PubMed  CAS  Google Scholar 

  28. Hess S, Rheinheimer C, Tidow F et al (2001) The reprogrammed host: Chlamydia trachomatis-induced up-regulation of glycoprotein 130 cytokines, transcription factors, and antiapoptotic genes. Arthritis Rheum 44:2392–2401

    Article  PubMed  CAS  Google Scholar 

  29. Ralph JA, McEvoy AN, Kane D et al (2005) Modulation of orphan nuclear receptor NURR1 expression by methotrexate in human inflammatory joint disease involves adenosine A2A receptor-mediated responses. J Immunol 175:555–565

    PubMed  CAS  Google Scholar 

  30. Gläser R, Harder J, Lange H et al (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 1:57–64

    Article  Google Scholar 

  31. Varoga D, Pufe T, Harder J et al (2005) Human β-defensin-3 mediates tissue remodelling processes in articular cartilage by increasing metalloproteinases and reducing their endogenous inhibitors. Arthritis Rheum 52:1736–1745

    Article  PubMed  CAS  Google Scholar 

  32. Varoga D, Paulsen FP, Kohrs S et al (2006) Expression and regulation of human beta-defensin-2 in osteoarthritis. J Pathol 209:166–173

    Article  PubMed  CAS  Google Scholar 

  33. Pufe T, Petersen W, Tillmann B et al (2001) The angiogenic peptide vascular endothelial growth factor is expressed in foetal and ruptured tendons. Virchows Arch 439:579–585

    Article  PubMed  CAS  Google Scholar 

  34. Harder J, Meyer-Hoffert U, Teran LM et al (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1-beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22:714–721

    PubMed  CAS  Google Scholar 

  35. Liu L, Roberts AA, Ganz T (2003) By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J Immunol 170:575–580

    PubMed  CAS  Google Scholar 

  36. Bals R, Wang X, Wu Z et al (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102:874–880

    Article  PubMed  CAS  Google Scholar 

  37. Becker MN, Diamond G, Verghese MW et al (2000) CD-14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 275:29731–29736

    Article  PubMed  CAS  Google Scholar 

  38. O’Neil DA, Porter EM, Elewaut D et al (1999) Expression and regulation of the human beta-defen-sins hBD-1 and HBD-2 in intestinal epithelium. J Immunol 163:6718–6724

    PubMed  Google Scholar 

  39. Varoga D, Pufe T, Harder J et al (2004) Production of endogenous antibiotics in articular cartilage. Arthritis Rheum 50:3526–3534

    Article  PubMed  CAS  Google Scholar 

  40. Yang D, Chertov O, Bykovskaia SN et al (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  41. Punzi L, Peuravuori H, Jokilammi-Siltanen A et al (2000) Bactericidal/permeability increasing protein and proinflammatory cytokines in synovial fluid of psoriatic arthritis. Clin Exp Rheumatol 18:613–615

    PubMed  CAS  Google Scholar 

  42. Bokarewa MI, Jin T, Tarkowski A (2003) Intraarticular release and accumulation of defensins and bactericidal/permeability-increasing protein in patients with rheumatoid arthritis. J Rheumatol 30:1719–1724

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Susanne Echterhagen, Christiane Jaeschke, Patrycja Kozak, Inka Kronenbitter, Ursula Mundt, Michaela Nicolau, Angela Rüben, Sonja Seiter, and Kirsten Vosen for their expert technical assistance and Clemens Franke for the drawing. The K4IM and the HSE cells were a courtesy from Christian Kaps. This work was supported by grants of the Deutsche Forschungsgemeinschaft (SFB 617, project A22; DFG Va 220/2-1, Pu 214/3-2, Pu 214/4-2, Pu 214/5-2, and PA 738/9-1), from the “Stiftung zur Förderung der Medizinischen Forschung” of the Medical Faculty of the University of Kiel (to D V and TP), from the Hensel Stiftung (to DV and FP), and by the “Verein zur Förderung der Erforschung und Bekämpfung rheumatischer Erkrankungen Bad Bramstedt e.V.”, and by BMBF/Wilhelm-Roux (FKZ 9/16 to FP).

Conflicts of interest

We declare that we have no conflict of interest.

Authors’ contributions

DV, TP, EK, CW, LB, FP, MT, and SL performed the experiments, and BT and AS contributed to the draft manuscript; DV and TP contributed equally to the present work. The manuscript has been read and approved by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pufe.

Additional information

The experiments comply with the current laws of Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varoga, D., Klostermeier, E., Paulsen, F. et al. The antimicrobial peptide HBD-2 and the Toll-like receptors-2 and -4 are induced in synovial membranes in case of septic arthritis. Virchows Arch 454, 685–694 (2009). https://doi.org/10.1007/s00428-009-0780-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0780-4

Keywords

Navigation