Skip to main content

Progression of Hormone-Dependent Mammary Tumors After Dormancy: Role of Wnt Pathway

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Vol. 3

Abstract

The cancer stem cell theory suggests the existence of cells within breast cancers that possess the ability to self-renew and differentiate, albeit in a deregulated manner, which sustains tumor progression. Therefore, latent breast tumors and/or their metastasis may eventually resume growth thorough signals impacting on cancer stem cells and their niche. Since it has been determined that the Wingless Related Protein (Wnt) signaling is a likely niche factor and regulator of Mammary Stem Cells dynamics, it is conceivable that this pathway play a significant role in the “awakening” of dormant tumors. We have previously shown that in virgin females, MMTV-induced pregnancy-dependent (ER+PR+) tumor transplants were able to remain dormant for up to 300 days, but were able to resume growth after hormone stimulation. In a subsequent transplant generation, all these tumors became ER−PR− and grew in virgin females, indicating that cancer dormancy facilitated progression to hormone-independence. Our data also showed that mutations altering expression of genes involved in the Wnt pathway were prone to be selected during progression. To gain more insight into the mechanisms underlying these observations, we compared the gene expression profile of tumors that either underwent or not dormancy before progressing to hormone-independency. Confirming our previously reported data, we found that the most significant up-regulated gene in hormone-independent tumors that progressed after dormancy was Wnt1. In addition, in this group we have determined a systematic down-modulation of previously described mediators of normal pubertal mammary gland development. Using a hierarchical clustering analysis to classify breast cancer patients, we have also identified a specific group of breast carcinomas with significant modulation of genes also deregulated in the MMTV-induced tumors that resumed growth after dormancy. Interestingly, that group of human samples was mainly composed by patients with basal-like breast carcinomas, which also showed down-regulation of genes associated to pubertal mammary development. Therefore, we believe that the cluster of co-regulated genes in basal human breast cancer and mouse mammary tumors resuming growth after dormancy might be mechanistically associated to the activation of Wnt pathway, which might induce proliferation from mammary progenitor basal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bai L, Rohrschneider LR (2010) s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev 24:1882–1892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boras-Granic K, Chang H, Grosschedl R, Hamel PA (2006) Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev Biol 295:219–231

    Article  PubMed  CAS  Google Scholar 

  • Brackstone M, Townson JL, Chambers AF (2007) Tumour dormancy in breast cancer: an update. Breast Cancer Res 9:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  PubMed  CAS  Google Scholar 

  • Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23:7350–7360

    Article  PubMed  CAS  Google Scholar 

  • Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14:650–654

    PubMed  CAS  PubMed Central  Google Scholar 

  • EBCTCG (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Article  Google Scholar 

  • Eriksson L, Hall P, Czene K, Dos Santos Silva I, McCormack V, Bergh J, Bjohle J, Ploner A (2012) Mammographic density and molecular subtypes of breast cancer. Br J Cancer 107:18–23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gattelli A, Cirio MC, Quaglino A, Schere-Levy C, Martinez N, Binaghi M, Meiss RP, Castilla LH, Kordon EC (2004) Progression of pregnancy-dependent mouse mammary tumors after long dormancy periods. Involvement of Wnt pathway activation. Cancer Res 64:5193–5199

    Article  PubMed  CAS  Google Scholar 

  • Gestl SA, Leonard TL, Biddle JL, Debies MT, Gunther EJ (2007) Dormant Wnt-initiated mammary cancer can participate in reconstituting functional mammary glands. Mol Cell Biol 27:195–207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horwitz KB, Sartorius CA (2008) Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: a hypothesis. J Clin Endocrinol Metab 93:3295–3298

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hsu W, Shakya R, Costantini F (2001) Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J Cell Biol 155:1055–1064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang da W, Sherman BT, Stephens R, Baseler MW, Lane HC, Lempicki RA (2008) DAVID gene ID conversion tool. Bioinformation 2:428–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda K, Nukumi N, Iwamori T, Osawa M, Naito K, Tojo H (2004) Inhibitory function of whey acidic protein in the cell-cycle progression of mouse mammary epithelial cells (EpH4/K6 cells). J Reprod Dev 50:87–96

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarde T, Dale T (2012) Wnt signalling in murine postnatal mammary gland development. Acta Physiol (Oxf) 204:118–127

    Article  CAS  Google Scholar 

  • Kariagina A, Xie J, Leipprandt JR, Haslam SZ (2011) Amphiregulin mediates estrogen, progesterone, and EGFR signaling in the normal rat mammary gland and in hormone-dependent rat mammary cancers. Horm Cancer 1:229–244

    Article  Google Scholar 

  • Kendrick H, Regan JL, Magnay FA, Grigoriadis A, Mitsopoulos C, Zvelebil M, Smalley MJ (2008) Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics 9:591

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, Segall JE (2012) Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One 7:e35569

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930

    PubMed  CAS  Google Scholar 

  • Kouros-Mehr H, Werb Z (2006) Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 235:3404–3412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM, Varmus HE (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100:15853–15858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, Williams BO (2006) The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem 281:35081–35087

    Article  PubMed  CAS  Google Scholar 

  • Lindvall C, Zylstra CR, Evans N, West RA, Dykema K, Furge KA, Williams BO (2009) The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One 4:e5813

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A 101:4158–41563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89

    Article  PubMed  Google Scholar 

  • McBryan J, Howlin J, Napoletano S, Martin F (2008) Amphiregulin: role in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 13:159–169

    Article  PubMed  Google Scholar 

  • Meier-Abt F, Milani E, Roloff T, Brinkhaus H, Duss S, Meyer DS, Klebba I, Balwierz PJ, van Nimwegen E, Bentires-Alj M (2013) Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Res 15:R36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  • Nam SW, Clair T, Campo CK, Lee HY, Liotta LA, Stracke ML (2000) Autotaxin (ATX), a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cells. Oncogene 19:241–247

    Article  PubMed  CAS  Google Scholar 

  • Nukumi N, Iwamori T, Kano K, Naito K, Tojo H (2007) Reduction of tumorigenesis and invasion of human breast cancer cells by whey acidic protein (WAP). Cancer Lett 252:65–74

    Article  PubMed  CAS  Google Scholar 

  • Popnikolov NK, Dalwadi BH, Thomas JD, Johannes GJ, Imagawa WT (2012) Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumour Biol 33:2237–2243

    Article  PubMed  CAS  Google Scholar 

  • Richert MM, Schwertfeger KL, Ryder JW, Anderson SM (2000) An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 5:227–241

    Article  PubMed  CAS  Google Scholar 

  • Roarty K, Rosen JM (2010) Wnt and mammary stem cells: hormones cannot fly wingless. Curr Opin Pharmacol 10:643–649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    PubMed  CAS  Google Scholar 

  • Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E (2013) The way Wnt works: components and mechanism. Growth Factors 31:1–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seifert JR, Mlodzik M (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8:126–138

    Article  PubMed  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  PubMed  CAS  Google Scholar 

  • Sorlie T (2007) Molecular classification of breast tumors: toward improved diagnostics and treatments. Methods Mol Biol 360:91–114

    PubMed  Google Scholar 

  • Sriraman V, Sinha M, Richards JS (2009) Progesterone receptor-induced gene expression in primary mouse granulosa cell cultures. Biol Reprod 82:402–412

    Article  PubMed  PubMed Central  Google Scholar 

  • Szeto W, Jiang W, Tice DA, Rubinfeld B, Hollingshead PG, Fong SE, Dugger DL, Pham T, Yansura DG, Wong TA, Grimaldi JC, Corpuz RT, Singh JS, Frantz GD, Devaux B, Crowley CW, Schwall RH, Eberhard DA, Rastelli L, Polakis P, Pennica D (2001) Overexpression of the retinoic acid-responsive gene Stra6 in human cancers and its synergistic induction by Wnt-1 and retinoic acid. Cancer Res 61:4197–4205

    PubMed  CAS  Google Scholar 

  • Teissedre B, Pinderhughes A, Incassati A, Hatsell SJ, Hiremath M, Cowin P (2009) MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PLoS One 4:e4537

    Article  PubMed  PubMed Central  Google Scholar 

  • Tepera SB, McCrea PD, Rosen JM (2003) A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci 116:1137–1149

    Article  PubMed  CAS  Google Scholar 

  • Tice DA, Szeto W, Soloviev I, Rubinfeld B, Fong SE, Dugger DL, Winer J, Williams PM, Wieand D, Smith V, Schwall RH, Pennica D, Polakis P (2002) Synergistic induction of tumor antigens by Wnt-1 signaling and retinoic acid revealed by gene expression profiling. J Biol Chem 277:14329–14335

    Article  PubMed  CAS  Google Scholar 

  • Uhr JW, Pantel K (2011) Controversies in clinical cancer dormancy. Proc Natl Acad Sci U S A 108:12396–12400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  • von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437

    Article  Google Scholar 

  • Wilson CL, Miller CJ (2005) Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 21:3683–3685

    Article  PubMed  CAS  Google Scholar 

  • Zeng YA, Nusse R (2010) Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6:568–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J, Li Y, Liu Q, Lu W, Bu G (2009) Wnt signaling activation and mammary gland hyperplasia in MMTV-LRP6 transgenic mice: implication for breast cancer tumorigenesis. Oncogene 29:539–549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith C. Kordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gattelli, A. et al. (2014). Progression of Hormone-Dependent Mammary Tumors After Dormancy: Role of Wnt Pathway. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Vol. 3. Tumor Dormancy and Cellular Quiescence and Senescence, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9325-4_6

Download citation

Publish with us

Policies and ethics