Skip to main content

Molecular Breeding for Improved Biotic Stress Resistance

  • Chapter
Wheat in a Global Environment

Part of the book series: Developments in Plant Breeding ((DIPB,volume 9))

  • 40 Accesses

Abstract

Molecular breeding of wheat in the sense of genetic engineering will be the subject of this paper. It will review actual strategies for engineering fungal resistance in crops. An efficient method for genetic transformation of wheat like the biolistic method using immature embryos as target tissue — together with genes that directly or indirectly inhibit the pathogen’s spread — form the basis for the development of transgenic wheat plants with improved fungal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, D., Brettschneider, R., Lörz, H. (1994): Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J, 5 (2): 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Becker, D., Lörz, H. (1996): Production of fertile transgenic wheat by microprojectile bombardement. Plant Tiss Cult Man, B. 12: 1–20.

    Article  Google Scholar 

  • Christou, P., Ford, T.L., Kofron, M. (1991): Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology, 9: 957–962.

    Article  Google Scholar 

  • Wit, P.J.G.M. (1992): Molecular characterisation of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu. Rev. Phytopathol., 30: 391–418.

    Article  PubMed  Google Scholar 

  • Flor, H.H. (1971): Current status of the gene-for-gene concept. Annu Rev. Phytopathol., 9: 275–296.

    Article  Google Scholar 

  • Gianinazzi, S., Martin, C., Vallee, J.C. (1970): Hypersensibilite aux virus, temperature et proteines soluble chez le Nicotiana Xanthi n.c. Apparition de nouvelles macromolecules lors de la repression de la synthese virale. C.R. Acad. Sci. Paris (Ser. D) 270: 23–83.

    Google Scholar 

  • Görnhardt, B., Logemann, J., Pinsdorf, E., Schell, J., Maas, C. (1994): Plants expressing an antifungal protein (Ag-AFP) from Aspergillus giganteus. 16th Int. Congress of Biochem. and Mo. Biol. New Delhi, India: Publications and Information Directorate, Abstract No. P4–55.

    Google Scholar 

  • Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brian, J.V., Chambers, S.A., Adams, J.W.R., Willets, N.G., Rice, T.B., Mackey, C.J., Krueger, W., Kausch, A.P., Lemaux, P.G. (1990): Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell, 2: 603–618.

    PubMed  CAS  Google Scholar 

  • Hain, R., Reif, H.-J., Langebartels, R., Kindl., H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P.H., Stöcker, R.H., Stenzel, K. (1993): Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 361: 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K.E., Harrison, K., Jones, J.D.G. (1994): Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease resistance gene Cf-9 Proc. Natl. Acad. Sci. USA 91: 10444–10449.

    Article  Google Scholar 

  • Hammond-Kosack, K.E., Torres, M.A., Jones, J.D.G. (1998): Can we use race-specific R genes to provide broad-spectrum pathogen control? Abstract No.5.4.1S (1) 7th International Congress of Plant Pathology 1998, Edinburgh, Schotland.

    Google Scholar 

  • Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., Maas, C. (1995): Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J., 8 (1): 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Jongedijk, E., Tigelaar, H., van Roekel, J.S.C., Bres-Vloemans, S.A., Dekker, I., van den Elzen, P.J.M., Cornelissen, B.J.C., Melchers, L.S. (1995): Synergistic activity of chitinases and beta-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 85: 173–180.

    Article  CAS  Google Scholar 

  • Leah, R., Tommerup, H., Svendsen, I., Mundy, J. (1991): Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem, 266: 1464–1473.

    Google Scholar 

  • Leckband, G., Lörz, H. (1998): Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet., 96: 1004–1012.

    Article  CAS  Google Scholar 

  • Nakaya, K., Ornata, K., Okahashi, I., Nakamura, Y., Kolckenbrock, H., Ulbrich, N. (1990): Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem., 193 (1): 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Gerke, E.C., Dehne, H.W., Schönbeck, F., Weber, A. (1994): Crop production and crop protection. (ed.) Amsterdam, Elsevier Science.

    Google Scholar 

  • Schwekendiek, A., Pfeffer, G., Kindl, H. (1992): Pine stilbene synthase cDNA, a tool for probing environmental stress. FEBS Letters, 301: 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Somers, D.A., Rines, H.W., Gu, W. Kaeppler, H., Bushnell, W.R. (1992): Fertile transgenic oat plants. Bio/Technology, 10: 1589–1594.

    Article  CAS  Google Scholar 

  • Stark-Lorenzen, P., Nelke, B., Hänler, G., Mühlbach, H.P., Thomzik, J.E. (1997): Transfer of a stilbene synthase gene to rice (Oryza saliva L.). Plant Cell Reports, 16: 668–673.

    Article  CAS  Google Scholar 

  • Thomzik, J.E. (1993): Transformation in oilseed rape Brassica napus L. Bajaj YPS (eds) Biotechnology in agriculture and forestry. 23: 171–182. Springer, Berlin Heidelberg, New York.

    Google Scholar 

  • Van Loon, L.C., Van Kammen, A. (1970): Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and after infection with TMV. Virology, 40: 199.

    Article  Google Scholar 

  • Vasil, V., Castillo, A.M., Fromm, M.E., Vasil, I.K. (1992): Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technol., 10: 667–674.

    Article  CAS  Google Scholar 

  • Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A., Lamb, C.J. (1994): Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology, 12: 807–812.

    Article  CAS  Google Scholar 

  • Zimny, J., Becker, D., Brettschneider, R., Lörz, H. (1995): Fertile, transgenic Triticale (x Triticosecale Wittmack). Molecular Breeding, 1 (2): 155–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oldach, K., Serazetdinova, L., Becker, D., Lorz, H. (2001). Molecular Breeding for Improved Biotic Stress Resistance. In: Bedö, Z., Láng, L. (eds) Wheat in a Global Environment. Developments in Plant Breeding, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3674-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3674-9_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5618-4

  • Online ISBN: 978-94-017-3674-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics