Skip to main content

Nano-Particles for Biomedical Applications

  • Chapter
Springer Handbook of Nanotechnology

Abstract

Nanoparticles (GlossaryTerm

NP

s) are extremely small particulates with an average size that ranges from a micron or less to a few nanometers. The large majority of NPs necessitate nanotechnology methods for their production. The size of NPs may vary over a significant range, which underlies their scientific potential in that NPs may help cross the bridge between bulk materials and molecular structures. More importantly, NPs are (nano)tech products and thus, in contrast to natural systems, they can be designed and engineered. On directly interacting with cells, including the structures of cells, their machinery and their waste products, NPs represent an unprecedented tool for addressing specific biological problems. In this chapter, we will briefly review some recent advances in nanoparticle research for biomedical applications, ranging from mesoporous silicon particles to gold and silver nanoparticles and polymeric nanocarriers for therapeutic, diagnosis, or theranostic (therapeutics + diagnosis) applications. We will offer a description of how, at the current state of the art, similar nanomedicine platforms are realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.R.S. Sanhai, J.H. Sakamoto, R. Canady, M. Ferrari: Seven challenges for nanomedicine, Nat. Nanotechnol. 3, 242–244 (2008)

    Google Scholar 

  2. O. Salata: Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. (2004) doi:10.1186/1477-3155-2-3

  3. K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs: Nanomedicine–challenge and perspectives, Angewandte Chemie Int. Edn. 48(5), 872–897 (2009)

    Google Scholar 

  4. R. Petros, J. DeSimone: Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 9(8), 615–627 (2010)

    Google Scholar 

  5. M. Ferrari: Cancer nanotechnology: Opportunities and challenges, Nat. Rev. Cancer 5, 161–171 (2005)

    Google Scholar 

  6. W.M. Haynes (Ed.): CRC Handbook of Chemistry and Physics (CRC, Boulder 1998)

    Google Scholar 

  7. Z. Zhang, M.A. Horsch, M.H. Lamm, S.C. Glotzer: Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly, Nano Lett. 3(10), 1341–1346 (2003)

    Google Scholar 

  8. P.F. Damasceno, M. Engel, S.C. Glotzer: Predictive self-assembly of polyhedra into complex structures, Science 337, 453 (2012)

    Google Scholar 

  9. X. Lu, M. Rycenga, S. Skrabalak, B. Wiley, Y. Xia: Chemical synthesis of novel plasmonic nanoparticles, Ann. Rev. Phys. Chem. 60, 167–192 (2009)

    Google Scholar 

  10. M.G. Guzmán, J. Dille, S. Godet: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009)

    Google Scholar 

  11. U. Mohanty: Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, J. Appl. Electrochem. 41, 257–270 (2011)

    Google Scholar 

  12. N. German, A. Ramanavicius, A. Ramanavicien: Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing, Sens. Actuators B 203, 25–34 (2014)

    Google Scholar 

  13. J. Key, A.L. Palange, F. Gentile, S. Aryal, C. Stigliano, D. Di Mascolo, E. De Rosa, M. Cho, Y. Lee, J. Singh, P. Decuzzi: Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors, ACS Nano 9(12), 11628–11641 (2015)

    Google Scholar 

  14. C. Daraio, S. Jin: Synthesis and patterning methods for nanostructures useful for biological applications. In: Nanotechnology for Biology and Medicine at the Building Block Level, ed. by G.A. Silva, V. Parpura (Springer, New York 2012)

    Google Scholar 

  15. T.D.H. Le, W. Bonani, G. Speranza, V. Sglavo, R. Ceccato, D. Maniglio, A. Motta, C. Migliaresi: Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering, Mater. Sci. Eng. C 59, 471–479 (2016)

    Google Scholar 

  16. A. Jantschke, C. Fischer, R. Hensel, H.G. Braun, E. Brunner: Directed assembly of nanoparticles to isolated diatom valves using the non-wetting characteristics after pyrolysis, Nanoscale 6, 11637–11645 (2014)

    Google Scholar 

  17. S. Schlücker: Surface-enhanced Raman spectroscopy: Concepts and chemical applications, Angew. Chem. Int. Edn. 53(19), 4756–4795 (2014)

    Google Scholar 

  18. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78, 1667–1670 (1997)

    Google Scholar 

  19. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld: Surface-enhanced Raman scattering and biophysics, J. Phys. Condens. Matter 14, R597–R624 (2002)

    Google Scholar 

  20. J. Kneipp, H. Kneipp, K. Kneipp: SERS-a single-molecule and nanoscale tool for bioanalytics, Chem. Soc. Rev. 37(5), 1052–1060 (2008)

    Google Scholar 

  21. S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, Y. Román-Leshkov: Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts, Science 352(6288), 974–978 (2016)

    Google Scholar 

  22. O. Govorov, H.H. Richardson: Generating heat with metal nanoparticles, Nano Today 2, 30–38 (2007)

    Google Scholar 

  23. G. Baffou, R. Quidan: Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat, Laser Photonics Rev. 7(2), 171–187 (2013)

    Google Scholar 

  24. D. Maharaj, B. Bhushan: Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation, J. Nanotechnol. 5, 822–836 (2014)

    Google Scholar 

  25. D. Maharaj, B. Bhushan: Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and Carbon nanohorns, Sci. Rep. 5(8539), 1–9 (2015)

    Google Scholar 

  26. D. Chen, X. Qiao, X. Qiu, J. Chen: Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, J. Mater. Sci. 44(4), 1076 (2009)

    Google Scholar 

  27. A.H. Alshehri, M. Jakubowska, A. Młożniak, M. Horaczek, D. Rudka, C. Free, J.D. Carey: Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications, ACS Appl. Mater. Interfaces 4(12), 7007–7010 (2012)

    Google Scholar 

  28. A. Akbarzadeh, M. Samiei, S. Davaran: Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett. 7(1), 144 (2012)

    Google Scholar 

  29. B. Nawrot, E. Gaggelli: Understanding the chemical mechanisms of life, Nat. Chem. Biol. 3, 745–749 (2007)

    Google Scholar 

  30. G.M. Whitesides: The ‘right’ size in nanobiotechnology, Nat. Biotechnol. 21, 1161–1165 (2003)

    Google Scholar 

  31. W.F. Marshall, K.D. Young, M. Swaffer, E. Wood, P. Nurse, A. Kimura, J. Frankel, J. Wallingford, V. Walbot, X. Qu, A.H. Roeder: What determines cell size?, BMC Biology 10(101), 1–22 (2012) doi:10.1186/1741-7007-10-101

    Article  Google Scholar 

  32. E. Hafen, H. Stocker: How are the sizes of cells, organs, and bodies controlled?, PLoS. Biol. 1(3), e86 (2003)

    Google Scholar 

  33. Y. Fung: Biomechanics, Mechanical Properties of Living Tissues (Springer, New York 1993)

    Google Scholar 

  34. M. Elsabahy, K.L. Wooley: Design of polymeric nanoparticles for biomedical delivery applications, Chem. Soc. Rev. 41, 2545–2561 (2012)

    Google Scholar 

  35. E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M. Ming-Cheng Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications, Nat. Nanotechnol. 3, 151–157 (2008)

    Google Scholar 

  36. E. Blanco, H. Shen, M. Ferrari: Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol. 33, 941–951 (2015)

    Google Scholar 

  37. A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos, J.O. Martinez, B.S. Brown, S.Z. Khaled, I.K. Yazdi, M.V. Enzo, L. Isenhart, M. Ferrari, E. Tasciotti: Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions, Nat. Nanotechnol. 8, 61–68 (2013)

    Google Scholar 

  38. Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink: Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev. 41, 2590–2605 (2012)

    Google Scholar 

  39. J.S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R.E. Serda, R. Krishnamurthy, R. Muthupillai, R.D. Bolskar, L. Helm, M. Ferrari, L.J. Wilson, P. Decuzzi: Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast, Nat. Nanotechnol. 5, 815–821 (2010)

    Google Scholar 

  40. L. Dykmana, N. Khlebtsov: Gold nanoparticles in biomedical applications: Recent advances and perspectives, Chem. Soc. Rev. 41, 2256–2282 (2012)

    Google Scholar 

  41. E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed: The golden age: Gold nanoparticles for biomedicine, Chem. Soc. Rev. 41, 2740–2779 (2012)

    Google Scholar 

  42. Q.H. Tran, V.Q.A.-T. Le Nguyen: Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013)

    Google Scholar 

  43. S. Prabhu, E.K. Poulose: Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett. 2(32), 1–10 (2012)

    Google Scholar 

  44. H.T. Nasrabadi, E. Abbasi, S. Davaran, M. Kouhi, A. Akbarzadeh: Bimetallic nanoparticles: Preparation, properties, and biomedical applications, Artif. Cells Nanomed. Biotechnol. 44, 376–380 (2016)

    Google Scholar 

  45. C. Xu, S. Sun: New forms of superparamagnetic nanoparticles for biomedical applications, Adv. Drug Deliv. Rev. 65, 732–743 (2013)

    Google Scholar 

  46. A.K. Gupta, M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26, 3995–4021 (2005)

    Google Scholar 

  47. J.H. Lee, J.-T. Jang, J.-S. Choi, S.H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon: Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6, 418–422 (2011)

    Google Scholar 

  48. H.L. Ferrand, S. Bolisetty, A.F. Demirors, R. Libanori, A.R. Studart, R. Mezzenga: Magnetic assembly of transparent and conducting graphene-based functional composites, Nat. Commun. 7, 12078 (2016)

    Google Scholar 

  49. L.Y. Chou, K. Zagorovsky, W.C. Chan: DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination, Nat. Nanotechnol. 9, 148–155 (2014)

    Google Scholar 

  50. F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A.L. Breton, V. Préat: PLGA-based nanoparticles: An overview of biomedical applications, J. Control. Release 161, 505–522 (2012)

    Google Scholar 

  51. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer: Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol. 2(12), 751–760 (2007) doi:10.1038/nnano.2007.387

    Article  Google Scholar 

  52. C. Antoniades, C. Psarros, D. Tousoulis, C. Bakogiannis, C. Shirodaria, C. Stefanadis: Nanoparticles: A promising therapeutic approach in atherosclerosis, Curr. Drug Deliv. 7(4), 303–311 (2010)

    Google Scholar 

  53. A.C. Anselmo, S. Mitragotri: An overview of clinical and commercial impact of drug delivery systems, J. Control. Release 190, 15–28 (2014) doi:10.1016/j.jconrel.2014.03.053

    Article  Google Scholar 

  54. A.L. van de Ven, P. Kim, O.A.H. Haley, J.R. Fakhoury, G. Adriani, J. Schmulen, P. Moloney, F. Hussain, M. Ferrari, X. Liu, S.-H. Yun, P. Decuzzi: Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution, J. Control. Release 158(1), 148–155 (2012) doi:10.1016/j.jconrel.2011.10.021

    Article  Google Scholar 

  55. M. Nabil, P. Decuzzi, P. Zunino: Modelling mass and heat transfer in nano-based cancer hyperthermia, R. Soc. Open Sci. 2(10), 150447 (2015) doi:10.1098/rsos.150447

    Article  Google Scholar 

  56. R.E. Serda, S. Ferrati, B. Godin, E. Tasciotti, X. Liu, M. Ferrari: Mitotic trafficking of silicon microparticles, Nanoscale 1(2), 250–259 (2009) doi:10.1039/B9NR00138G

    Article  Google Scholar 

  57. A.C. Anselmo, M. Zhang, S. Kumar, D.R. Vogus, S. Menegatti, M.E. Helgeson, S. Mitragotri: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting, ACS Nano 9(3), 3169–3177 (2015) doi:10.1021/acsnano.5b00147

    Article  Google Scholar 

  58. D.D. Joseph, D. Ocando: Slip velocity and lift, J. Fluid Mech. 454, 263–286 (2002) doi:10.1017/S0022112001007145

    Article  MathSciNet  MATH  Google Scholar 

  59. T.R. Lee, M. Choi, A.M. Kopacz, S.H. Yun, W.K. Liu, P. Decuzzi: On the near-wall accumulation of injectable particles in the microcirculation: Smaller is not better, Sci. Rep. 3, 2079 (2013) doi:10.1038/srep02079

    Article  Google Scholar 

  60. T.R. Lee, M.S. Greene, Z. Jiang, A.M. Kopacz, P. Decuzzi, W. Chen, W.K. Liu: Quantifying uncertainties in the microvascular transport of nanoparticles, Biomech. Model. Mechanobiol. 13(3), 515–526 (2014) doi:10.1007/s10237-013-0513-0

    Article  Google Scholar 

  61. M.D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano: An immersed boundary method for compressible flows using local grid refinement, J. Comput. Phys. 225(2), 2098–2117 (2007)

    MathSciNet  MATH  Google Scholar 

  62. S.S. Hossain, T.J. Hughes, P. Decuzzi: Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree, Biomech. Model. Mechanobiol. 13(3), 585–597 (2014) doi:10.1007/s10237-013-0520-1

    Article  Google Scholar 

  63. S.S. Hossain, Y. Zhang, X. Liang, F. Hussain, M. Ferrari, T.J. Hughes, P. Decuzzi: In silico vascular modeling for personalized nanoparticle delivery, Nanomedicine 8(3), 343–357 (2013) doi:10.2217/nnm.12.124

    Article  Google Scholar 

  64. A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271, 285–309 (1994)

    MathSciNet  MATH  Google Scholar 

  65. A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271, 311–339 (1994)

    MathSciNet  MATH  Google Scholar 

  66. S. Succi: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, Oxford 2001)

    MATH  Google Scholar 

  67. C. Sun, C. Migliorini, L.L. Munn: Red blood cells initiate leukocyte rolling in postcapillary expansions: A lattice Boltzmann analysis, Biophys. J. 85(1), 208–222 (2003) doi:10.1016/S0006-3495(03)74467-1

    Article  Google Scholar 

  68. A. Coclite, M.D. de Tullio, G. Pascazio, P. Decuzzi: A combined lattice Boltzmann and immersed boundary approach for predicting the vascular transport of differently shaped particles, Comput. Fluids 136, 260–271 (2016)

    MathSciNet  MATH  Google Scholar 

  69. H. Maeda: Macromolecular therapeutics in cancer treatment: The EPR effect and beyond, J. Control. Release 164(2), 138–144 (2012) doi:10.1016/j.jconrel.2012.04.038

    Article  Google Scholar 

  70. R.K. Jain, T. Stylianopoulos: Delivering nanomedicine to solid tumors, Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010) doi:10.1038/nrclinonc.2010.139

    Article  Google Scholar 

  71. C. Stigliano, J. Key, M. Ramirez, S. Aryal, P. Decuzzi: Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging, Adv. Funct. Mater. 25(22), 3371–3379 (2015) doi:10.1002/adfm.201500627

    Article  Google Scholar 

  72. A. Lee, D. Di Mascolo, M. Francardi, F. Piccardi, T. Bandiera, P. Decuzzi: Spherical polymeric nanoconstructs for combined chemotherapeutic and anti-inflammatory therapies, Nanomedicine 12(7), 2139–2147 (2016) doi:10.1016/j.nano.2016.05.012

    Article  Google Scholar 

  73. S.Y. Lee, M. Ferrari, P. Decuzzi: Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows, Nanotechnology 20(49), 495101 (2009) doi:10.1088/0957-4484/20/49/495101

    Article  Google Scholar 

  74. P. Decuzzi, B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini, X. Liu, M. Ferrari: Size and shape effects in the biodistribution of intravascularly injected particles, J. Control. Release 141(3), 320–327 (2010) doi:10.1016/j.jconrel.2009.10.014

    Article  Google Scholar 

  75. P. Decuzzi, M. Ferrari: The adhesive strength of non-spherical particles mediated by specific interactions, Biomaterials 27(30), 5307–5314 (2006) doi:10.1016/j.biomaterials.2006.05.024

    Article  Google Scholar 

  76. P. Decuzzi, M. Ferrari: Design maps for nanoparticles targeting the diseased microvasculature, Biomaterials 29(3), 377–384 (2008) doi:10.1016/j.biomaterials.2007.09.025

    Article  Google Scholar 

  77. L.T. Canham: Bioactive silicon structure fabrication through nanoetching techniques, Adv. Mater. 7(12), 1033–1037 (1995) doi:10.1002/adma.19950071215

    Article  Google Scholar 

  78. H. Ouyang, M. Christophersen, P.M. Fauchet: Enhanced control of porous silicon morphology from macropore to mesopore formation, Phys. Stat. Sol. A 202(8), 1396–1401 (2005) doi:10.1002/pssa.200461112

    Article  Google Scholar 

  79. L. Xiao, L. Gu, S.B. Howell, M.J. Sailor: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells, ACS Nano 5, 3651–3659 (2011)

    Google Scholar 

  80. C. Chiappini, X. Liu, J.R. Fakhoury, M. Ferrari: Biodegradable porous silicon barcode nanowires with defined geometry, Adv. Funct. Mater. 20(14), 2231–2239 (2010) doi:10.1002/adfm.201000360

    Article  Google Scholar 

  81. C. Chiappini, E. De Rosa, J.O. Martinez, X. Liu, J. Steele, M.M. Stevens, E. Tasciotti: Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization, Nat. Mater. 14(5), 532–539 (2015) doi:10.1038/nmat4249

    Article  Google Scholar 

  82. X.G. Zhang: Morphology and formation mechanisms of porous silicon, J. Electrochem. Soc. 151(1), C69–C80 (2004) doi:10.1149/1.1632477

    Article  Google Scholar 

  83. F. Dai, J. Zai, R. Yi, M.L. Gordin, H. Sohn, S. Chen, D. Wang: Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance, Nat. Comm. 5, 1–11 (2014) doi:10.1038/ncomms4605

    Article  Google Scholar 

  84. L. Batchelor, A. Loni, L.T. Canham, M. Hasan, J.L. Coffer: Manufacture of mesoporous silicon from living plants and agricultural waste: An environmentally friendly and scalable process, Silicon 4(4), 259–266 (2012) doi:10.1007/s12633-012-9129-8

    Article  Google Scholar 

  85. M.J. Sailor: Fundamentals of porous silicon preparation. In: Porous Silicon in Practice (Wiley-VCH, Weinheim 2012) pp. 1–42

    Google Scholar 

  86. X. Li, P.W. Bohn: Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett. 77(16), 2572–2574 (2000) doi:10.1063/1.1319191

    Article  Google Scholar 

  87. S.F. Chuang, S.D. Collins, R.L. Smith: Preferential propagation of pores during the formation of porous silicon: A transmission electron microscopy study, Appl. Phys. Lett. 55(7), 675 (1989) doi:10.1063/1.101819

    Article  Google Scholar 

  88. H. Foll, M. Christophersen, J. Carstensen, G. Hasse: Formation and application of porous silicon, Mater. Sci. Eng. 39, 93–141 (2002)

    Google Scholar 

  89. L.T. Canham, L. Canham (Eds.): Handbook of Porous Silicon (Springer, Cham 2014)

    Google Scholar 

  90. M.G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiß, P. Grosse: Dielectric filters made of PS: Advanced performance by oxidation and new layer structures, Thin Sol. Films 297(1/2), 237–240 (1997) doi:10.1016/S0040-6090(96)09361-3

    Article  Google Scholar 

  91. F. Cunin, T.A. Schmedake, J.R. Link, Y.Y. Li, J. Koh, S.N. Bhatia, M.J. Sailor: Biomolecular screening with encoded porous-silicon photonic crystals, Nat. Mater. 1(1), 39–41 (2002) doi:10.1038/nmat702

    Article  Google Scholar 

  92. J. Salonen, V.P. Lehto, E. Laine: Thermal oxidation of free-standing porous silicon films, Appl. Phys. Lett. 70(5), 637–639 (1997) doi:10.1063/1.118294

    Article  Google Scholar 

  93. T.A. Schmedake, F. Cunin, J.R. Link, M.J. Sailor: Standoff detection of chemicals using porous silicon ‘‘smart dust’’ particles, Adv. Mater. 14(18), 1270–1272 (2002)

    Google Scholar 

  94. J. Salonen, L. Laitinen, A. Kaukonen, J. Tuura, M. Bjorkqvist, T. Heikkila, K. Vahaheikkila, J. Hirvonen, V. Lehto: Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs, J. Control. Release 108(2/3), 362–374 (2005) doi:10.1016/j.jconrel.2005.08.017

    Article  Google Scholar 

  95. H.A. Santos, J. Riikonen, J. Salonen, E. Mäkilä, T. Heikkilä, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen: In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size, Acta. Biomater. 6(7), 2721–2731 (2010) doi:10.1016/j.actbio.2009.12.043

    Article  Google Scholar 

  96. J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor: Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater. 8(4), 331–336 (2009) doi:10.1038/nmat2398

    Article  Google Scholar 

  97. R.A. Petros, J.M. DeSimone: Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 9(8), 615–627 (2010) doi:10.1038/nrd2591

    Article  Google Scholar 

  98. S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone: The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. 105(33), 11613–11618 (2008) doi:10.1073/pnas.0801763105

    Article  Google Scholar 

  99. B. Godin, C. Chiappini, S. Srinivasan, J.F. Alexander, K. Yokoi, M. Ferrari, P. Decuzzi, X. Liu: Discoidal porous silicon particles: Fabrication and biodistribution in breast cancer bearing mice, Adv. Funct. Mater. 22(20), 4225–4235 (2012) doi:10.1002/adfm.201200869

    Article  Google Scholar 

  100. C. Chiappini, E. Tasciotti, J.R. Fakhoury, D. Fine, L. Pullan, Y.C. Wang, L. Fu, X. Liu, M. Ferrari: Tailored porous silicon microparticles: Fabrication and properties, Chem. Phys. Chem. 11(5), 1029–1035 (2010) doi:10.1002/cphc.200900914

    Article  Google Scholar 

  101. C. Chiappini, E. Tasciotti, R.E. Serda, L. Brousseau, X. Liu, M. Ferrari: Mesoporous silicon particles as intravascular drug delivery vectors: Fabrication, in-vitro, and in-vivo assessments, Phys. Stat. Sol. C 8(6), 1826–1832 (2011) doi:10.1002/pssc.201000344

    Article  Google Scholar 

  102. C. Zhang, C. Li, Z. Liu, J. Zheng, C. Xue, Y. Zuo, B. Cheng, Q. Wang: Electrically conductive and optically active porous silicon nanowires, Nano. Lett. 9(12), 4539–4543 (2009) doi:10.1021/nl903030h

    Article  Google Scholar 

  103. C. Chartier, S. Bastide, C. Lévy-Clément: Metal-assisted chemical etching of silicon in HF–H2O2, Electrochim. Acta. 53(17), 5509–5516 (2008) doi:10.1016/j.electacta.2008.03.009

    Article  Google Scholar 

  104. N. Geyer, B. Fuhrmann, Z. Huang, J. de Boor, H.S. Leipner, P. Werner: Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts, J. Phys. Chem. C 116(24), 13446–13451 (2012) doi:10.1021/jp3034227

    Article  Google Scholar 

  105. X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan: Unveiling the formation pathway of single crystalline porous silicon nanowires, ACS Appl. Mater. Interf. 3(2), 261–270 (2011) doi:10.1021/am1009056

    Article  Google Scholar 

  106. J. Kim, H. Rhu, W. Lee: A continuous process for Si nanowires with prescribed lengths, J. Mater. Chem. 21(40), 15889–15894 (2011) doi:10.1039/C1JM13831F

    Article  Google Scholar 

  107. M. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, E. Di Fabrizio: Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications, Sensors 14(4), 6056–6083 (2014) doi:10.3390/s140406056

    Article  Google Scholar 

  108. R. Elnathan, L. Isa, D. Brodoceanu, A. Nelson, F.J. Harding, B. Delalat, T. Kraus, N.H. Voelcker: Versatile particle-based route to engineer vertically aligned silicon nanowire arrays and nanoscale pores, ACS Appl. Mater. Interf. 7(42), 23717–23724 (2015) doi:10.1021/acsami.5b07777

    Article  Google Scholar 

  109. H. Alhmoud, B. Delalat, R. Elnathan, A.C. Rius, A. Chaix, M.L. Rogers, J.-O. Durand, N.H. Voelcker: Porous silicon nanodiscs for targeted drug delivery, Adv. Funct. Mater. 25(7), 1137–1145 (2015) doi:10.1002/adfm.201403414

    Article  Google Scholar 

  110. H. Lin, H.-Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J.C. Ho, C.-Y. Wong: Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping, J. Mater. Chem. A 1(34), 9942–9946 (2013) doi:10.1039/C3TA11889D

    Article  Google Scholar 

  111. F. Gentile, M.L. Coluccio, R.P. Zaccaria, M. Francardi, G. Cojoc, G. Perozziello, R. Raimondo, P. Candeloro, E. Di Fabrizio: Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles, Nanoscale 6(14), 8208–8225 (2014) doi:10.1039/C4NR00796D

    Article  Google Scholar 

  112. G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari: Ideal hydrogen termination of the Si (111) surface, Appl. Phys. Lett. 56(7), 656–658 (1990) doi:10.1063/1.102728

    Article  Google Scholar 

  113. A.G. Cullis, L.T. Canham, P.D.J. Calcott: The structural and luminescence properties of porous silicon, J. Appl. Phys. 82(3), 909 (1997) doi:10.1063/1.366536

    Article  Google Scholar 

  114. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada: Growth of native oxide on a silicon surface, J. Appl. Phys. 68(3), 1272 (1990) doi:10.1063/1.347181

    Article  Google Scholar 

  115. M.A. Tischler, R.T. Collins, J.H. Stathis, J.C. Tsang: Luminescence degradation in porous silicon, Appl. Phys. Lett. 60(5), 639 (1992) doi:10.1063/1.106578

    Article  Google Scholar 

  116. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen, Phys. Rev. Lett. 82(1), 197–200 (1999) doi:10.1103/PhysRevLett.82.197

    Article  Google Scholar 

  117. J. Riikonen, M. Salomäki, J. van Wonderen, M. Kemell, W. Xu, O. Korhonen, M. Ritala, F. MacMillan, J. Salonen, V.P. Lehto: Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods, Langmuir 28(28), 10573–10583 (2012) doi:10.1021/la301642w

    Article  Google Scholar 

  118. J.B. Brzoska, I.B. Azouz, F. Rondelez: Silanization of solid substrates: A step toward reproducibility, Langmuir 10(11), 4367–4373 (1994), doi:10.1021/la00023a072

    Google Scholar 

  119. G.T. Hermanson: Bioconjugate Techniques, 3rd edn. (Elsevier, Amsterdam 2013)

    Google Scholar 

  120. J. Salonen, E. Laine, L. Niinistö: Thermal carbonization of porous silicon surface by acetylene, J. Appl. Phys. 91(1), 456 (2002) doi:10.1063/1.1421221

    Article  Google Scholar 

  121. P. Allongue, V.C. Kieling, H. Gerischer: Etching of silicon in NaOH solutions, J. Electrochem. Soc. 140(4), 1009–1018 (1993) doi:10.1149/1.2056189

    Article  Google Scholar 

  122. J.O. Martinez, C. Chiappini, A. Ziemys, A.M. Faust, M. Kojic, X. Liu, M. Ferrari, E. Tasciotti: Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics, Biomaterials 34, 8469–8477 (2013) doi:10.1016/j.biomaterials.2013.07.049

    Article  Google Scholar 

  123. R.E. Serda, A. Mack, M. Pulikkathara, A.M. Zaske, C. Chiappini, J.R. Fakhoury, D. Webb, B. Godin, J.L. Conyers, X.W. Liu, J.A. Bankson, M. Ferrari: Cellular association and assembly of a multistage delivery system, Small 6(12), 1329–1340 (2010) doi:10.1002/smll.201000126

    Article  Google Scholar 

  124. S.H.C. Anderson, H. Elliott, D.J. Wallis, L.T. Canham, J.J. Powell: Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions, Phys. Stat. Sol A 197(2), 331–335 (2003) doi:10.1002/pssa.200306519

    Article  Google Scholar 

  125. B. Godin, J. Gu, R.E. Serda, R. Bhavane, E. Tasciotti, C. Chiappini, X. Liu, T. Tanaka, P. Decuzzi, M. Ferrari: Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation, J. Biomed. Mater. Res. A 94A(4), 1236–1243 (2010) doi:10.1002/jbm.a.32807

    Article  Google Scholar 

  126. W. Sun, J.E. Puzas, T.J. Sheu, X. Liu, P.M. Fauchet: Nano-to microscale porous silicon as a cell interface for bone-tissue engineering, Adv. Mater. 19(7), 921–924 (2007) doi:10.1002/adma.200600319

    Article  Google Scholar 

  127. T. Jalkanen, E. Mäkilä, Y.I. Suzuki, T. Urata, K. Fukami, T. Sakka, J. Salonen, Y.H. Ogata: Studies on chemical modification of porous silicon-based graded-index optical microcavities for improved stability under alkaline conditions, Adv. Funct. Mater. 22(18), 3890–3898 (2012) doi:10.1002/adfm.201200386

    Article  Google Scholar 

  128. A.T. Balter, Z. Shatsberg, M. Beckerman, E. Segal, N. Artzi: Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues, Nat. Comm. 6, 6208 (2015) doi:10.1038/ncomms7208

    Article  Google Scholar 

  129. T. Tanaka, B. Godin, R. Bhavane, R.N. Alicea, J. Gu, X. Liu, C. Chiappini, J.R. Fakhoury, S. Amra, A. Ewing: In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice, Int. J. Pharm. 402(1/2), 190–197 (2010) doi:10.1016/j.ijpharm.2010.09.015

    Article  Google Scholar 

  130. L. Gu, D.J. Hall, Z. Qin, E. Anglin, J. Joo, D.J. Mooney, S.B. Howell, M.J. Sailor: In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles, Nat. Comm. 4, 1–7 (2013) doi:10.1038/ncomms3326

    Article  Google Scholar 

  131. M. Ariza-Avidad, A. Nieto, A.S. alinas-Castillo, L.F. Capitan-Vallvey, G.M. Miskelly, M.J. Sailor: Monitoring of degradation of porous silicon photonic crystals using digital photography, Nanoscale Res. Lett. 9(1), 410 (2014) doi:10.1186/1556-276X-9-410

    Article  Google Scholar 

  132. S.P. Low, K.A. Williams, L.T. Canham, N.H. Voelcker: Generation of reactive oxygen species from porous silicon microparticles in cell culture medium, J. Biomed. Mater. Res. A 93A(3), 1124–1131 (2010) doi:10.1002/jbm.a.32610

    Article  Google Scholar 

  133. S. Low, K. Williams, L. Canham, N. Voelcker: Evaluation of mammalian cell adhesion on surface-modified porous silicon, Biomaterials 27(26), 4538–4546 (2006) doi:10.1016/j.biomaterials.2006.04.015

    Article  Google Scholar 

  134. S.D. Alvarez, A.M. Derfus, M.P. Schwartz, S.N. Bhatia, M.J. Sailor: The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors, Biomaterials 30(1), 26–34 (2009) doi:10.1016/j.biomaterials.2008.09.005

    Article  Google Scholar 

  135. L.M. Bimbo, M. Sarparanta, H.A. Santos, A.J. Airaksinen, E. Mäkilä, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen, J. Salonen: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats, ACS Nano 4(6), 3023–3032 (2010) doi:10.1021/nn901657w

    Article  Google Scholar 

  136. S.P. Low, N.H. Voelcker, L.T. Canham, K.A. Williams: The biocompatibility of porous silicon in tissues of the eye, Biomaterials 30(15), 2873–2880 (2009) doi:10.1016/j.biomaterials.2009.02.008

    Article  Google Scholar 

  137. A.S.-W. Goh, A.Y.-F. Chung, R.H.-G. Lo, T.-N. Lau, S.W.-K. Yu, M. Chng, S. Satchithanantham, S.L.-E. Loong, D.C.-E. Ng, B.-C. Lim, S. Connor, P.K.-H. Chow: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device – A first-in-man study, Int. J. Radiat. Oncol. Biol. Phys. 67(3), 786–792 (2007) doi:10.1016/j.ijrobp.2006.09.011

    Article  Google Scholar 

  138. R.E. Serda, J. Gu, R.C. Bhavane, X. Liu, C. Chiappini, P. Decuzzi, M. Ferrari: The association of silicon microparticles with endothelial cells in drug delivery to the vasculature, Biomaterials 30(13), 2440–2448 (2009) doi:10.1016/j.biomaterials.2009.01.019

    Article  Google Scholar 

  139. S. Ferrati, A. Mack, C. Chiappini, X. Liu, A.J. Bean, M. Ferrari, R.E. Serda: Intracellular trafficking of silicon particles and logic-embedded vectors, Nanoscale 2(8), 1512–1520 (2010) doi:10.1039/C0NR00227E

    Article  Google Scholar 

  140. E. Tasciotti, B. Godin, J.O. Martinez, C. Chiappini, R.C. Bhavane, X. Liu, M. Ferrari: Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles, Mol. Imag. 10(1), 56 (2011)

    Google Scholar 

  141. E. De Rosa, C. Chiappini, D. Fan, X. Liu, M. Ferrari, E. Tasciotti: Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system, Pharm. Res. 28(7), 1520–1530 (2011) doi:10.1007/s11095-011-0453-2

    Article  Google Scholar 

  142. D. Liu, L.M. Bimbo, E. Mäkilä, F. Villanova, M. Kaasalainen, B. Herranz-Blanco, C.M. Caramella, V.P. Lehto, J. Salonen, K.-H. Herzig, J. Hirvonen, H.A. Santos: Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles, J. Control. Release 170(2), 268–278 (2013) doi:10.1016/j.jconrel.2013.05.036

    Article  Google Scholar 

  143. M. Xue, X. Zhong, Z. Shaposhnik, Y. Qu, F. Tamanoi, X. Duan, J.I. Zink: pH-operated mechanized porous silicon nanoparticles, J. Am. Chem. Soc. 133(23), 8798–8801 (2011) doi:10.1021/ja201252e

    Article  Google Scholar 

  144. A.P. Mann, T. Tanaka, A. Somasunderam, X. Liu, D.G. Gorenstein, M. Ferrari: E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow, Adv. Mater. 23(36), H278–H282 (2011) doi:10.1002/adma.201101541

    Article  Google Scholar 

  145. E. Secret, M. Maynadier, A. Gallud, M.G. Bobo, A. Chaix, E. Belamie, P. Maillard, M.J. Sailor, M. Garcia, J.O. Durand, F. Cunin: Anionic porphyrin -grafted porous silicon nanoparticles for photodynamic therapy, Chem. Comm. 49(39), 4202–4204 (2013) doi:10.1039/C3CC38837A

    Article  Google Scholar 

  146. M. Wang, J.L. Coffer, K. Dorraj, P.S. Hartman, A. Loni, L.T. Canham: Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon, Mol. Pharm. 7(6), 2232–2239 (2010) doi:10.1021/mp100227m

    Article  Google Scholar 

  147. R. Xu, G. Zhang, J. Mai, X. Deng, V. Segura-Ibarra, S. Wu, J. Shen, H. Liu, Z. Hu, L. Chen, Y. Huang, E. Koay, Y. Huang, J. Liu, J.E. Ensor, E. Blanco, X. Liu, M. Ferrari, H. Shen: An injectable nanoparticle generator enhances delivery of cancer therapeutics, Nat. Biotechnol. 34(4), 414–418 (2016) doi:10.1038/nbt.3506

    Article  Google Scholar 

  148. J.O. Martinez, M. Evangelopoulos, V. Karun, E. Shegog, J.A. Wang, C. Boada, X. Liu, M. Ferrari, E. Tasciotti: The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation, Biomaterials 35(37), 9824–9832 (2014) doi:10.1016/j.biomaterials.2014.08.024

    Article  Google Scholar 

  149. L. Gu, L.E. Ruff, Z. Qin, M. Corr, S.M. Hedrick, M.J. Sailor: Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody, Adv. Mater. 24(29), 3981–3987 (2012) doi:10.1002/adma.201200776

    Article  Google Scholar 

  150. C. Chiappini, J.O. Martinez, E. De Rosa, C.S. Almeida, E. Tasciotti, M.M. Stevens: Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: Exploring the biointerface, ACS Nano 9, 5500–5509 (2015) doi:10.1021/acsnano.5b01490

    Article  Google Scholar 

  151. M.M. Orosco, C. Pacholski, G.M. Miskelly, M.J. Sailor: Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity, Adv. Mater. 18(11), 1393–1396 (2006) doi:10.1002/adma.200502420

    Article  Google Scholar 

  152. C. Chiappini, P. Campagnolo, C.S. Almeida, N. Annassi-Ghadi, L.W. Chow, G.B. Hanna, M.M. Stevens: Mapping Local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles, Adv. Mater. 27(35), 5147–5152 (2015) doi:10.1002/adma.201501304

    Article  Google Scholar 

  153. A. Caliò, I. Rea, J. Politi, P. Giardina, S. Longobardi, L.D. Stefano: Hybrid bio/non-bio interfaces for protein-glucose interaction monitoring, J. Appl. Phys. 114(13), 134904 (2013) doi:10.1063/1.4824379

    Article  Google Scholar 

  154. G. Rong, J.D. Ryckman, R.L. Mernaugh, S.M. Weiss: Label-free porous silicon membrane waveguide for DNA sensing, Appl. Phys. Lett. 93(16), 161109 (2008) doi:10.1063/1.3005620

    Article  Google Scholar 

  155. N. Massad-Ivanir, G. Shtenberg, A. Tzur, M.A. Krepker, E. Segal: Engineering nanostructured porous SiO2 surfaces for bacteria detection via ‘‘direct cell capture’’, Anal. Chem. 83(9), 3282–3289 (2011) doi:10.1021/ac200407w

    Article  Google Scholar 

  156. L. De Stefano, I. Rea, I. Rendina, L. Rotiroti, M. Rossi, S. D'Auria: Resonant cavity enhanced optical microsensor for molecular interactions based on porous silicon, Phys. Stat. Sol. A 203(5), 886–891 (2006) doi:10.1002/pssa.200521350

    Article  Google Scholar 

  157. S. D'Auria, M. de Champdoré, V. Aurilia, A. Parracino, M. Staiano, A. Vitale, M. Rossi, I. Rea, L. Rotiroti, A.M. Rossi, S. Borini, I. Rendina, L. De Stefano: Nanostructured silicon-based biosensors for the selective identification of analytes of social interest, J. Phys. Condens. Matter 18(33), S2019–S2028 (2006) doi:10.1088/0953-8984/18/33/S17

    Article  Google Scholar 

  158. V.S.Y. Lin, K. Motesharei, K.-P.S. Dancil, M.J. Sailor, M.R. Ghadiri: A porous silicon-based optical interferometric biosensor, Science 278(5339), 840–843 (1997) doi:10.1126/science.278.5339.840

    Article  Google Scholar 

  159. J. Zhang, Y. Wu, B. Zhang, M. Li, S. Jia, S. Jiang, H. Zhou, Y. Zhang, C. Zhang, A.P.F. Turner: Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor, Anal. Lett. 45(9), 986–992 (2012) doi:10.1080/00032719.2012.670784

    Article  Google Scholar 

  160. L.A. Osminkina, V.A. Sivakov, G.A. Mysov, V.A. Georgobiani, U.A. Natashina, F. Talkenberg, V.V. Solovyev, A.A. Kudryavtsev, V.Y. Timoshenko: Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy, Nanoscale Res. Lett. 9(1), 1 (2014) doi:10.1186/1556-276X-9-463

    Article  Google Scholar 

  161. A. Gizzatov, C. Stigliano, J.S. Ananta, R. Sethi, R. Xu, A. Guven, M. Ramirez, H. Shen, A. Sood, M. Ferrari, L.J. Wilson, X. Liu, P. Decuzzi: Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer, Cancer Lett. 352(1), 97–101 (2014) doi:10.1016/j.canlet.2014.06.001

    Article  Google Scholar 

  162. R. Duncan, R. Gaspar: Nanomedicine (s) under the microscope, Mol. Pharm. 8(6), 2101–2141 (2011)

    Google Scholar 

  163. W.B. Liechty, D.R. Kryscio, B.V. Slaughter, N.A. Peppas: Polymers for drug delivery systems, Annu. Rev. Chem. Biomol. Eng. 1, 149 (2010)

    Google Scholar 

  164. Y.H. Yun, B.K. Lee, K. Park: Controlled drug delivery: Historical perspective for the next generation, J. Control. Release 219, 2–7 (2011)

    Google Scholar 

  165. H.A. Santos: Porous Silicon for Biomedical Applications (Elsevier, Amsterdam 2014)

    Google Scholar 

  166. N. Shrestha, M.-A. Shahbazi, F. Araújo, E. Mäkilä, J. Raula, E.I. Kauppinen, J. Salonen, B. Sarmento, J. Hirvonen, H.A. Santos: Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system, Biomaterials 68, 9–20 (2015)

    Google Scholar 

  167. M.K. Marschütz, A. Bernkop-Schnürch: Oral peptide drug delivery: polymer–inhibitor conjugates protecting insulin from enzymatic degradation in vitro, Biomaterials 21(14), 1499–1507 (2000)

    Google Scholar 

  168. S. Munier, I. Messai, T. Delair, B. Verrier, Y. Ataman-Önal: Cationic PLA nanoparticles for DNA delivery: Comparison of three surface polycations for DNA binding, protection and transfection properties, Colloids Surf. B 43(3), 163–173 (2005)

    Google Scholar 

  169. H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, J.V. Frangioni: Renal clearance of quantum dots, Nat. Biotechnol. 25(10), 1165–1170 (2007)

    Google Scholar 

  170. M.I. Stockman, D.J. Bergman, T. Kobayashi: Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems, Phys. Rev. B 69, 054202 (2004)

    Google Scholar 

  171. S. Stolnik, L. Illum, S. Davis: Long circulating microparticulate drug carriers, Adv. Drug Deliv. Rev. 64, 290–301 (2012)

    Google Scholar 

  172. H.A. Santos, E. Mäkilä, A.J. Airaksinen, L.M. Bimbo, J. Hirvonen: Porous silicon nanoparticles for nanomedicine: Preparation and biomedical applications, Nanomedicine 9(4), 535–554 (2014)

    Google Scholar 

  173. H.A. Santos, J. Hirvonen: Nanostructured porous silicon materials: Potential candidates for improving drug delivery, Nanomedicine 7(9), 1281–1284 (2012)

    Google Scholar 

  174. F. Fontana, M.P. Ferreira, A. Correia, J. Hirvonen, H.A. Santos: Microfluidics as a cutting-edge technique for drug delivery applications, J. Drug Deliv. Sci. Technol. 34, 76–87 (2016)

    Google Scholar 

  175. I. Polenz, D.A. Weitz, J.-C. Baret: Polyurea microcapsules in microfluidics: Surfactant control of soft membranes, Langmuir 31(3), 1127–1134 (2015)

    Google Scholar 

  176. A. Utada, L.-Y. Chu, A. Fernandez-Nieves, D. Link, C. Holtze, D. Weitz: Dripping, jetting, drops, and wetting: The magic of microfluidics, MRS Bull. 32(09), 702–708 (2007)

    Google Scholar 

  177. A.S. Utada, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz: Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett. 99(9), 094502 (2007)

    Google Scholar 

  178. Y. Kim, B.L. Chung, M. Ma, W.J. Mulder, Z.A. Fayad, O.C. Farokhzad, R. Langer: Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices, Nano Lett. 12(7), 3587–3591 (2012)

    Google Scholar 

  179. P.M. Valencia, O.C. Farokhzad, R. Karnik, R. Langer: Microfluidic technologies for accelerating the clinical translation of nanoparticles, Nat. Nanotechnol. 7(10), 623–629 (2012) doi:10.1038/nnano.2012.168

    Article  Google Scholar 

  180. E.F. Petricoin, D.K. Ornstein, C.P. Paweletz, A. Ardekani, P.S. Hackett, B.A. Hitt, A. Velasco, C. Trucco, L. Wiegand, K. Wood, C.B. Simone, P.J. Levine, W.M. Linehan, M.R.E. Buck, S.M. Steinberg, E.C. Kohn, L.A. Liotta: Serum proteomic patterns for detection of prostate cancer, J. Natl. Cancer Inst. 94(20), 1576–1578 (2002)

    Google Scholar 

  181. T. Rossow, J.A. Heyman, A.J. Ehrlicher, A. Langhoff, D.A. Weitz, R. Haag, S. Seiffert: Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics, J. Am. Chem. Soc. 134(10), 4983–4989 (2012) doi:10.1021/Ja300460p

    Article  Google Scholar 

  182. G.M. Whitesides: The origins and the future of microfluidics, Nature 442(7101), 368–373 (2006) doi:10.1038/nature05058

    Article  Google Scholar 

  183. A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip, J. Chromatogr. A 593(1), 253–258 (1992)

    Google Scholar 

  184. Y. Hu, A. Bouamrani, E. Tasciotti, L. Li, X. Liu, M. Ferrari: Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein, ACS Nano 4(1), 439–451 (2010)

    Google Scholar 

  185. J.S. Sander, L. Isa, P.A. Rühs, P. Fischer, A.R. Studart: Stabilization mechanism of double emulsions made by microfluidics, Soft Matter 8(45), 11471–11477 (2012)

    Google Scholar 

  186. L.R. Arriaga, S.S. Datta, S.H. Kim, E. Amstad, T.E. Kodger, F. Monroy, D.A. Weitz: Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation, Small 10(5), 950–956 (2014)

    Google Scholar 

  187. S. Nie, S.R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275(5303), 1102–1106 (1997)

    Google Scholar 

  188. Y.-C. Tan, V. Cristini, A.P. Lee: Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sens. Actuators B 114(1), 350–356 (2006)

    Google Scholar 

  189. J.C. Stachowiak, D.L. Richmond, T.H. Li, A.P. Liu, S.H. Parekh, D.A. Fletcher: Unilamellar vesicle formation and encapsulation by microfluidic jetting, Proc. Natl. Acad. Sci. 105(12), 4697–4702 (2008)

    Google Scholar 

  190. G. Whitesides, A. Stroock:: Flexible methods for microfluidics, J. Phys. Today 54(6), 42–48 (2001)

    Google Scholar 

  191. A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz: Monodisperse double emulsions generated from a microcapillary device, Science 308(5721), 537–541 (2005) doi:10.1126/science.1109164

    Article  Google Scholar 

  192. S. Yang, F. Guo, B. Kiraly, X. Mao, M. Lu, K.W. Leong, T.J. Huang: Microfluidic synthesis of multifunctional Janus particles for biomedical applications, Lab Chip 12(12), 2097–2102 (2012) doi:10.1039/c2lc90046g

    Article  Google Scholar 

  193. S. Mazzitelli, L. Capretto, F. Quinci, R. Piva, C. Nastruzzi: Preparation of cell-encapsulation devices in confined microenvironment, Adv. Drug Deliv. Rev. 65(11/12), 1533–1555 (2013)

    Google Scholar 

  194. Y. Kim, F. Fay, D.P. Cormode, B.L. Sanchez-Gaytan, J. Tang, E.J. Hennessy, M.M. Ma, K. Moore, O.C. Farokhzad, E.A. Fisher, W.J.M. Mulder, R. Langer, Z.A. Fayad: Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics, ACS Nano 7(11), 9975–9983 (2013) doi:10.1021/Nn4039063

    Article  Google Scholar 

  195. H.A. Santos: Opinion paper: Microfluidics technique to revolutionize the drug delivery field: Current developments and applications, Curr. Drug Deliv. 12(6), 642–644 (2015)

    Google Scholar 

  196. S. Marre, K.F. Jensen: Synthesis of micro and nanostructures in microfluidic systems, Chem. Soc. Rev. 39(3), 1183–1202 (2010) doi:10.1039/b821324k

    Article  Google Scholar 

  197. R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O.C. Farokhzad: Microfluidic platform for controlled synthesis of polymeric nanoparticles, Nano Lett. 8(9), 2906–2912 (2008)

    Google Scholar 

  198. S.H. Kim, J.W. Kim, D.H. Kim, S.H. Han, D.A. Weitz: Polymersomes containing a hydrogel network for high stability and controlled release, Small 9(1), 124–131 (2013)

    Google Scholar 

  199. S. Stainmesse, H. Fessi, J.P. Devissaguet, F. Puisieux, C. Theis: Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles, US Patent 5133908 (US005133908A) (1992)

    Google Scholar 

  200. F. Ganachaud, J.L. Katz: Nanoparticles and nanocapsules created using the Ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chem. Phys. Chem. 6(2), 209–216 (2005)

    Google Scholar 

  201. F. Kong, X. Zhang, H. Zhang, X. Qu, D. Chen, M. Servos, E. Mäkilä, J. Salonen, H.A. Santos, M. Hai, D.A. Weitz: Inhibition of multidrug resistance of cancer cells by co-delivery of DNA nanostructures and drugs using porous silicon nanoparticles@giant liposomes, Adv. Funct. Mater. 25(22), 3330–3340 (2015) doi:10.1002/adfm.201500594

    Article  Google Scholar 

  202. F. Araujo, N. Shrestha, M.A. Shahbazi, D. Liu, B. Herranz-Blanco, E.M. Makila, J.J. Salonen, J.T. Hirvonen, P.L. Granja, B. Sarmento, H.A. Santos: Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs, ACS Nano 9(8), 8291–8302 (2015) doi:10.1021/acsnano.5b02762

    Article  Google Scholar 

  203. H. Zhang, D. Liu, M.A. Shahbazi, E. Makila, B. Herranz-Blanco, J. Salonen, J. Hirvonen, H.A. Santos: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix, Adv. Mater. 26(26), 4497–4503 (2014) doi:10.1002/adma.201400953

    Article  Google Scholar 

  204. D. Liu, H. Zhang, B.-H. Blanco, E. Makila, V.P. Lehto, J. Salonen, J. Hirvonen, H.A. Santos: Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery, Small 10(10), 2029–2038 (2014) doi:10.1002/smll.201303740

    Article  Google Scholar 

  205. D. Liu, B. Herranz-Blanco, E. Makila, L.R. Arriaga, S. Mirza, D.A. Weitz, N. Sandler, J. Salonen, J. Hirvonen, H.A. Santos: Microfluidic templated mesoporous silicon-solid lipid microcomposites for sustained drug delivery, ACS Appl. Mater. Interfaces 5(22), 12127–12134 (2013) doi:10.1021/am403999q

    Article  Google Scholar 

  206. A. Jahn, S.M. Stavis, J.S. Hong, W.N. Vreeland, D.L. Devoe, M. Gaitan: Microfluidic mixing and the formation of nanoscale lipid vesicles, ACS Nano 4(4), 2077–2087 (2010) doi:10.1021/Nn901676x

    Article  Google Scholar 

  207. Y.T. Kim, B.L. Chung, M.M. Ma, W.J.M. Mulder, Z.A. Fayad, O.C. Farokhzad, R. Langer: Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices, Nano Lett. 12(7), 3587–3591 (2012) doi:10.1021/Nl301253v

    Article  Google Scholar 

  208. N. Kolishetti, S. Dhar, P.M. Valencia, L.Q. Lin, R. Karnik, S.J. Lippard, R. Langer, O.C. Farokhzad: Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy, Proc. Natl. Acad. Sci. 107(42), 17939–17944 (2010) doi:10.1073/pnas.1011368107

    Article  Google Scholar 

  209. A. Jahn, W.N. Vreeland, M. Gaitan, L.E. Locascio: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing, J. Am. Chem. Soc. 126(9), 2674–2675 (2004) doi:10.1021/Ja0318030

    Article  Google Scholar 

  210. C.J. Thiele: Neuroblastoma. In: Human Cell Culture, Vol. 1, ed. by J.R.W. Masters, B. Palsson (Springer, Dordrecht 1998) pp. 21–53

    Google Scholar 

  211. J.O. McNamara, E.R. Andrechek, Y. Wang, K.D. Viles, R.E. Rempel, E. Gilboa, B.A. Sullenger, P.H. Giangrande: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras, Nat. Biotechnol. 24(8), 1005–1015 (2006) doi:10.1038/Nbt1223

    Article  Google Scholar 

  212. F.S. Majedi, M.M. Hasani-Sadrabadi, J.J. VanDersarl, N. Mokarram, S. Hojjati-Emami, E. Dashtimoghadam, S. Bonakdar, M.A. Shokrgozar, A. Bertsch, P. Renaud: On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics, Adv. Funct. Mater. 24(4), 432–441 (2014)

    Google Scholar 

  213. A.J. Mieszawska, Y. Kim, A. Gianella, I. van Rooy, B. Priem, M.P. Labarre, C. Ozcan, D.P. Cormode, A. Petrov, R. Langer, O.C. Farokhzad, Z.A. Fayad, W.J.M. Mulder: Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy, Bioconj. Chem. 24(9), 1429–1434 (2013) doi:10.1021/Bc400166j

    Article  Google Scholar 

  214. P.M. Valencia, P.A. Basto, L.F. Zhang, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik: Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing, ACS Nano 4(3), 1671–1679 (2010)

    Google Scholar 

  215. M. Wang, M. Thanou: Targeting nanoparticles to cancer, Pharmacol. Res. 62(2), 90–99 (2010)

    Google Scholar 

  216. L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, O. Farokhzad: Nanoparticles in medicine: Therapeutic applications and developments, Clin. Pharmacol. Ther. 83(5), 761–769 (2008)

    Google Scholar 

  217. K.W. Spitzer, R.D. Vaughan-Jones: Regulation of intracellular pH in mammalian cells. In: The Sodium-Hydrogen Exchanger, ed. by M. Karmazyn, M. Arkiran, L. Fliegal (Springer, New York 2003) pp. 1–15

    Google Scholar 

  218. M. Stubbs, P.M. McSheehy, J.R. Griffiths, C.L. Bashford: Causes and consequences of tumour acidity and implications for treatment, Mol. Med. Today 6(1), 15–19 (2000)

    Google Scholar 

  219. K.E. Broaders, J.A. Cohen, T.T. Beaudette, E.M. Bachelder, J.M.J. Frechet: Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy, Proc. Natl. Acad. Sci. USA 106(14), 5497–5502 (2009)

    Google Scholar 

  220. E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J.M.J. Frechet, M.T. Albrecht, A.J. Mateczun, K.M. Ainslie, J.T. Pesce, A.M. Keane-Myers: In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants, Mol. Pharm. 7(3), 826–835 (2010)

    Google Scholar 

  221. M. Stockman: Nanoplasmonics: The physics behind the applications, Phys. Today 64(2), 39 (2011)

    Google Scholar 

  222. H. Wendt: Ullmann’s encyclopedia of industrial chemistry. In: Ullmann’s Encyclopedia of Industrial Chemistry, ‘‘Electrochemistry’’, ed. by H. Wendt (Wiley-VCH, Winheim 2004)

    Google Scholar 

  223. V. Dimitrova, L. Gorker: Modified Nernst equation for electroless metal deposition, Prog. React. Kinet. Mech. 31(1), 45–58 (2006)

    Google Scholar 

  224. D. Goia, E. Matijevic: Preparation of monodispersed metal particles, New J. Chem. 22, 1203–1215 (1998)

    Google Scholar 

  225. S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda: Catalytic activity of noble metals for metal-assisted chemical etching of silicon, Electrochimica. Acta. 53, 35–41 (2007)

    Google Scholar 

  226. S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda: Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions, Electrochim. Acta. 53(1), 35–41 (2007)

    Google Scholar 

  227. K. Kneipp: Surface-enhanced Raman scattering, Phys. Today 60(11), 40–47 (2007)

    Google Scholar 

  228. M.L. Coluccio, F. Gentile, G. Das, A. Nicastri, A.M. Perri, P. Candeloro, G. Perozziello, R.P. Zaccaria, J.S.T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, E. Di Fabrizio: Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain, Sci. Adv. 1(8), e1500487 (2015)

    Google Scholar 

  229. F. Gentile, M. Coluccio, A. Toma, E. Rondanina, M. Leoncini, F. De Angelis, G. Das, C. Dorigoni, P. Candeloro, E. Di Fabrizio: Electroless deposition dynamics of silver nanoparticles clusters: A diffusion limited aggregation (DLA) approach, Microelectron. Eng. 98, 359–362 (2012)

    Google Scholar 

  230. R. Dawkins, D. ben-Avraham: Computer simulations of diffusion-limited reactions, Comput. Sci. Eng. 3(1), 72–76 (2001)

    Google Scholar 

  231. T. Qiu, P. Chu: Self-selective electroless plating: an approach for fabrication of functional 1-D nanomaterials, Mater. Sci. Eng. R 61, 59–77 (2008)

    Google Scholar 

  232. T. Qiu, X. Wu, Y. Mei, P. Chu, G. Siu: Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method, Appl. Phys. A 81, 669–671 (2005)

    Google Scholar 

  233. T. Witten, L. Sander: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47(19), 1400–1403 (1981)

    Google Scholar 

  234. T. Witten, L. Sander: Diffusion-limited aggregation, Phys. Rev. B 27(9), 5686–5697 (1983)

    MathSciNet  Google Scholar 

  235. M. Saltzmann: Drug Delivery (Oxford University Press, Oxford 2001)

    Google Scholar 

  236. P. Decuzzi, F. Gentile, A. Granaldi, A. Curcio, F. Causa, C. Indolfi, P. Netti, M. Ferrari: Flow chamber analysis of size effects in the adhesion of spherical particles, Int. J. Nanomed. 2(4), 689–696 (2007)

    Google Scholar 

  237. P. Meakin: Diffusion controlled deposition on surfaces: Cluster size distribution, interface exponents, and other properties, Phys. Rev. B 30(8), 4207–4214 (1984)

    Google Scholar 

  238. Z. Racz, T. Vicsek: Diffusion controlled deposition: Cluster statistics and scaling, Phys. Rev. Lett. 51(26), 2382–2385 (1983)

    Google Scholar 

  239. F. Gentile, E. Battista, A. Accardo, M. Coluccio, M. Asande, G. Perozziello, G. Das, C. Liberale, F. De Angelis, P. Candeloro, P. Decuzzi, E. Di Fabrizio: Fractal structure can explain the increased hydrophobicity of nanoporous silicon films, Microelectron. Eng. 88, 2537–2540 (2011)

    Google Scholar 

  240. F. Gentile, M.L. Coluccio, P. Candeloro, M. Barberio, G. Perozziello, M. Francardi, E. Di Fabrizio: Electroless deposition of metal nanoparticle clusters: Effect of pattern distance, J. Vacuum Sci. Technol. B 32(2), 031804 (2014)

    Google Scholar 

  241. G. Simone, N. Malara, V. Trunzo, M. Renne, G. Perozziello, E. Di Fabrizio, A. Manz: Galectin-3 coats the membrane of breast cells and makes a signature of tumours, Mol. Biosys. 10(2), 258–265 (2014)

    Google Scholar 

  242. G. Simone: An alternative approach to the phase change of proteins in an aqueous mixture with ethanol, Chem. Eng. Res. Design 105, 130–136 (2016)

    Google Scholar 

  243. G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M.L. Coluccio, E. Carbone, E. Di Fabrizio: Microfluidic devices module tumor cell line susceptibility to NK cell recognition, Small 8(18), 2886–2894 (2012)

    Google Scholar 

  244. G. Perozziello, P. Candeloro, A. De Grazia, F. Esposito, M. Allione, M.L. Coluccio, R. Tallerico, I. Valpapuram, L. Tirinato, G. Das, A. Giugni, B. Torre, P. Veltri, U. Kruhne, G.D. Valle, E. Di Fabrizio: Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers, Opt. Express 24(2), A180–A190 (2016)

    Google Scholar 

  245. G. Simone: Demonstrating microdroplet coalescence for tailored and biodegradable microgel fabrication, RSC Adv. 5(70), 56848–56854 (2015)

    Google Scholar 

  246. G. Simone: Micro analysis to map the glycome code, Proteomics 14(9), 994–1000 (2014)

    Google Scholar 

  247. R. Catalano, G. Perozziello, G. Simone, P. Candeloro, F. Gentile, M.L. Coluccio, F. Pardeo, M. Burghammer, G. Cuda, C. Riekel, E. Di Fabrizio: Optimized fabrication protocols of microfluidic devices for x-ray analysis, Microelectron. Eng. 124, 13–16 (2014)

    Google Scholar 

  248. G. Keramas, G. Perozziello, O. Geschke, C.B.V. Christensen: Development of a multiplex microarray microsystem, Lab Chip 4(2), 152–158 (2004)

    Google Scholar 

  249. G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A.M. Perri, M.L. Coluccio, E. Parrotta, A. De Grazia, M. Tallerico, F. Pardeo, R. Catalano, G. Cuda, E. Di Fabrizio: A microfluidic dialysis device for complex biological mixture SERS analysis, Microelectron. Eng. 144, 37–41 (2015)

    Google Scholar 

  250. G. Simone, N. Malara, V. Trunzo, G. Perozziello, P. Neuzil, M. Francardi, L. Roveda, M. Renne, U. Prati, V. Mollace, A. Manz, E. Di Fabrizio: Protein–carbohydrate complex reveals circulating metastatic cells in a microfluidic assay, Small 9(12), 2152–2161 (2013)

    Google Scholar 

  251. G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M.L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H.D. Espinosa, G. Cuda, E. Di Fabrizio: Microfluidics and nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers, RSC Adv. 4(98), 55590–55598 (2014)

    Google Scholar 

  252. G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, E. Di Fabrizio: A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells, Microelectron. Eng. 111, 314–319 (2013)

    Google Scholar 

  253. G. Perozziello, J. Møllenbach, S. Laursen, E. di Fabrizio, K. Gernaey, U. Krühne: Lab on a chip automates in vitro cell culturing, Microelectron. Eng. 98, 655–658 (2012)

    Google Scholar 

  254. G. Simone, G. Perozziello: UV/VIS transparent optical waveguides fabricated using organic–inorganic nanocomposite layers, J. Nanosci. Nanotechnol. 11, 2057–2063 (2011)

    Google Scholar 

  255. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures, Nature Photonics 5, 682–687 (2011)

    Google Scholar 

Download references

Acknowledgements

Dr. Hélder A. Santos acknowledges the Academy of Finland (project numbers 252215 and 281300), the University of Helsinki and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement number 310892 for financial support. Dr. Dongfei Liu and Dr. Bárbara Herranz Blanco (Division of Pharmaceutical Chemistry and Technology) are also acknowledged for their discussions and for providing some of the material in the microfluidics section. Professor Francesco Gentile acknowledges the Italian Minister of Health (Project number GR-2010-2320665).

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Decuzzi, P. et al. (2017). Nano-Particles for Biomedical Applications. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics