Skip to main content

Cañahua (Chenopodium pallidicaule): A Promising New Crop for Arid Areas

  • Chapter
  • First Online:
Emerging Research in Alternative Crops

Part of the book series: Environment & Policy ((ENPO,volume 58))

Abstract

The genus Chenopodium L. is a large group of plants of the amaranth, quinoa and spinach family (the Amaranthaceae), contributing significantly as providers of food. Another species belonging to this family is the neglected and underutilized Andean grain species cañahua (Chenopodium pallidicaule Aellen). The grains are small and characterized by a low content of saponins and a high content of proteins with essential amino acid and high content of omega-6 fatty acid and essential minerals. The flour is a good alternative to wheat for people with coeliac problems.

The crop is grown organically by small-scale farmers in the highland of Bolivia and Peru, where growing conditions are harsh because of low fertility, salinity, strong winds and great variation in temperatures. It grows in dry, semi-arid to semi-desert land. It is used as staple foods in rural and urban diet as well as a fodder plant. Cañahua is a robust crop usually sown in the spring with 40–50 cm between rows. No pests or diseases seem to be able to affect its development and growth significantly. However, yields are usually low (ca 1100 kg ha−1) depending of growing conditions and variety/landrace. For some varieties and landraces, seed shattering before harvest can be a problem, especially under extreme weather condition which is not rare in the region.

Cañahua grains and flour has a great potential for export because it can be cropped organically under extreme condition and has a high nutritional value. Unfortunately, only a few know about the crop and its qualities, and it has not been bred intensively to improve yields so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABI (2017) Cañahua de Oruro llega a la NASA. La Prensa (Digital), 8 de Mayo de 2017. http://www.laprensa.com.bo/economia/20170508/canahua-oruro-llega-la-nasa. Accessed 8 May 2017

  • Aduviri G (2006) Aplicacion de diferentes niveles de subproductos del beneficiado de quinua (Chenopodium quinoa Willd.) en la preparacion de raciones para cuyers (Cavia porcellus L.) en crecimiento y engorde. Facultad de Agronomía, UMSA, La Paz, Bolivia

    Google Scholar 

  • Alandia G, Rodriguez JP, Jacobsen S-E, Bazile D, Condori B (2016) A new face of quinoa production: challenges for the Andean region. In: Quinoa for Future Food and Nutrition Security in Marginal Environments, Dubai, United Arab Emirates, 2016-12-06/2016-12-08 2016. ICBA, public, pp 29–30

    Google Scholar 

  • Alanoca C, Flores J, Mamani E, Pinto M, Rojas W (2008) Preparación del terreno y siembra, Manejo tradicional del cultivo de cañahua. Serie No. 1. La Paz, Bolivia

    Google Scholar 

  • Alvarez-Jubete L, Holse M, Hansen Å, Arendt EK, Gallagher E (2009) Impact of baking on vitamin E content of pseudocereals amaranth, quinoa, and buckwheat. Cereal Chem 86:511–515. https://doi.org/10.1094/CCHEM-86-5-0511

    Article  Google Scholar 

  • Apaza V (2010) Manejo y mejoramiento de kañiwa. Convenio Instituto Nacional de Innovacion Agraria INIA-Puno, Centro de Investigación de Recursos Naturales y Medio Ambiente-CIRNMA, Bioversity International y el International Fund for Agricultural Development-IFAD, Puno, Perú

    Google Scholar 

  • Aro JM, Repo-Carrasco R, Calsin M (2017) Elaboracion de una mezcla alimenticia a base de quinua (Chenopodium quinoa Willd.), canihua (Chenopodium pallidicaule Aellen), cebada (Hordeum vulgare L.), maiz (Zea mays L.), haba (Vicia faba L.) y soya (Glycine max L. Merr.) por proceso de coccion-extrusion. Paper presented at the 6to Congreso Mundial de la Quinua, 3er Simposio Internacional de Granos Andinos, Puno, Peru, 2017-03-21/2017-03-24

    Google Scholar 

  • Bavec F, Mlakar SG (2002) Effects of soil and climatic conditions on emergence of grain amaranths. Eur J Agron 17:93–103

    Article  Google Scholar 

  • Bjerga A, Quigley J (2014) Andean superfood lost in quinoa craze as orphan crop. http://www.bloomberg.com/news/2014-05-30/andean-superfood-lost-in-quinoa-craze-as-orphan-crop.html. Accessed 2 June 2014

  • Bois JF, Winkel T, Lhomme JP, Raffaillac JP, Rocheteau A (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. Eur J Agron 25:299–308

    Article  Google Scholar 

  • Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (2010) Granos andinos: avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, Roma

    Google Scholar 

  • Brown AHD, Hodgkin T (2015) Indicators of genetic diversity, genetic erosion, and genetic vulnerability for plant genetic resources. In: Ahuja MR, Jain SM (eds) Genetic diversity and erosion in plants: indicators and prevention. Springer International Publishing, Cham, pp 25–53. https://doi.org/10.1007/978-3-319-25637-5_2

    Chapter  Google Scholar 

  • Bruno MC (2006) A morphological approach to documenting the domestication of Chenopodium in the Andes. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD (eds) Documenting domestication: new genetic and archaeological paradigms. University of California Press, California, pp 32–45

    Google Scholar 

  • Bruno MC (2014) Beyond raised fields: exploring farming practices and processes of agricultural change in the ancient Lake Titicaca Basin of the Andes. Am Anthropol 116(1):130–145. https://doi.org/10.1111/aman.12066

    Article  Google Scholar 

  • Bruno MC, Whitehead WT (2003) Chenopodium cultivation and formative period agriculture at Chiripa, Bolivia. Lat Am Antiq 14(3):339–355. https://doi.org/10.2307/3557565

    Article  Google Scholar 

  • Budin JT, Breene WM, Putnam DH (1996) Some compositional properties of seeds and oils of eight Amaranthus species. J Am Oil Chem Soc 73:475–481. https://doi.org/10.1007/BF02523922

    Article  Google Scholar 

  • Calle E (1980) Morfología y variabilidad de las cañahuas cultivadas (Chenopodium pallidicaule Aellen). Tesis Ing. Agr., Universidad Mayor de San Simon, Cochabamba, Bolivia

    Google Scholar 

  • Calle E (2004) Efecto de la cañahua (Chenopodium pallidicaule Aellen), trito (Triticum aestivum L.), soya (Glycine max M.), germinados en la alimentacion de cuyes en recria para la prevencion de escorbuto. Thesis, Universidad Tecnica de Oruro, Oruro, Bolivia

    Google Scholar 

  • Callisaya V (2015) Efecto de niveles de abonamiento con turba en el comportamiento de la qañawa (Chenopodium pallidicaule Aellen) bajo ambiente atemperado en K'iphakiphani-Viacha, Provincia Ingavi. Facultad de Agronomía, UMSA, La Paz

    Google Scholar 

  • Carrasco E, Soto JL (2010) II. Importancia de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jager M, Padulosi S (eds) Granos Andinos. Avances, Logros y Experiencias Desarrolladas en Quinua, Canahua y Amarnto en Bolivia. Bioversity International, Rome, pp 6–10

    Google Scholar 

  • Catacora P (2017) El Centro de Conservacion de la Biodiversidad Genetica de la Quinua en Centro de Origen y Centro de Diversidad Genetica de la Region Andina. Paper presented at the 6to Congreso Mundial de la Quinua, 3er Simposio Internacional de Granos Andinos, Puno, 2017-03-21/2017-03-24

    Google Scholar 

  • Choque R (2005). Efecto de niveles de fertilizacion con estiercol de llama (Lama glama) en tres ecotips de cañahua (Chenopodium pallidicaule Aellen) en el Altiplano Norte (Region Cordillera). Facultad de Agronomía, UMSA, La Paz

    Google Scholar 

  • Choukr-Allah R, Rao NK, Hirich A, Shahid M, Alshankiti A, Toderich K, Gill S, Butt KUR (2016) Quinoa for marginal environments: toward future food and nutritional security in MENA and central Asia regions. Front Plant Sci 7:346. https://doi.org/10.3389/fpls.2016.00346

    Article  Google Scholar 

  • Churata P (2015) Elaboración de bebida instantanea de cañahua (Chenopodium pallidicaule Aellen) con actividad antioxidante. Tesis Lic. Quim. Ind., Universidad Mayor de San Andres, La Paz, 185p

    Google Scholar 

  • Cortez H (2016) Evaluación de cuatro niveles de polvillo de Qañäwa (Chenopodium pallidicaule A.) en la alimentación de Cuyes (Cavia porcellus L.) en crecimiento. Revista Apthapi 1(2):86–95

    Google Scholar 

  • Cruz Torres E, Palomino Hasbach G, García Andrade JM, Mapes Sánchez C, González Jiménez J, Falcón Bárcenas T, Vázquez Arriaga O (2013) The genus Chenopodium: a potential food source. In: Jain SM, Dutta Gupta S (eds) Biotechnology of neglected and underutilized crops. Springer, Dordrecht, pp 3–31. https://doi.org/10.1007/978-94-007-5500-0_1

    Chapter  Google Scholar 

  • Delgadillo E (2012) Creation of three nutritional mixes based on amaranth (Amaranthus caudatus) and other Andean crops for school-aged childred (Cochabamba–Bolivia). All theses and dissertations paper 5356, 102p. http://scholarsarchive.byu.edu/etd

  • Devaux A, Ordinola M, Horton D (2011) Innovation for development: the Papa Andina experience. CIP, International Potato Center, Lima

    Book  Google Scholar 

  • Dizes J, Bonifacio A (1992) Estudio en microscopio electrónico de la morfología de los órganos de la quinua y de la canihua en relación con la resistencia a la sequía In: Actas de VII Congreso Internacional sobre Cultivos Andinos La Paz-Bolivia, p 5

    Google Scholar 

  • Estaña W, Muñoz C (2012) Variabilidad Genetica de la Cañihua en las provincias de Puno. Equipo Tecnico del “Proyecto Mejoramiento de Capacidades Tecnico Productivas para la Competitividad de los Cultivos Andinos de Papa Nativa, Haba y Cañihua en la Region Puno”, Puno

    Google Scholar 

  • FAO (2017) The future of food and agriculture: trends and challenges. FAO, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Farnworth CR, Jiggins J (2003) Participatory plant breeding and gender analysis. PPB Monograph No. 4. CIAT, Centro Internacional de Agricultura Tropical, Cali

    Google Scholar 

  • Filomeno M (2017) Tras 6 años de auge, produccion de quinua bajo en 23% en 2016. Diario Pagina Siete. paginasiete.bo/economia/2017/1/9/tras-anos-auge-produccion-quinua-bajo-2016-123060.html. Accessed 16 Oct 2017

    Google Scholar 

  • Fletcher RJ (2016) Pseudocereals: overview. In: Encyclopedia of food grains (2nd edn). Academic, Oxford, pp 274–279. doi:https://doi.org/10.1016/B978-0-12-394437-5.00039-5

  • Fritz GJ, Bruno MC, Langlie BS, Smith BD, Kistler L (2017) Cultigen chenopods in the Americas: a hemispherical perspective. In: Sayre MP, Bruno MC (eds) Social perspectives on ancient lives from paleoethnobotanical data. Springer International Publishing, Cham, pp 55–75. https://doi.org/10.1007/978-3-319-52849-6_3

    Chapter  Google Scholar 

  • Fuentes-Bazan S, Uotila P, Borsch T (2012) A novel phylogeny-based generic classification of Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42(June 2012):5–24

    Article  Google Scholar 

  • Gade DW (1970) Ethnobotany of cañihua (Chenopodium-pallidicaule), rustic seed crop of altiplano. Econ Bot 24(1):55–61. https://doi.org/10.1007/bf02860637

    Article  Google Scholar 

  • Gallego D, Russo L, Kerbab K, Landi M, Rastrelli L (2014) Chemical and nutritional characterization of Chenopodium pallidicaule (cañihua) and Chenopodium quinoa (quinoa) seeds. Emir J Food Agric 26(7):609–615. https://doi.org/10.9755/ejfa.v26i7.18187

    Article  Google Scholar 

  • Galluzzi G, López Noriega I (2014) Conservation and use of genetic resources of underutilized crops in the Americas—a continental analysis. Sustainability 6(2):980–1017

    Article  Google Scholar 

  • Galvez L, Apostolidis E, Genovese MI, Lajolo FM, Shetty K (2009) Evaluation of indigenous grains from the Peruvian Andean Region for antidiabetes and antihypertension potential using in vitro methods. J Med Food 12(4):704–713. https://doi.org/10.1089/jmf.2008.0122

    Article  Google Scholar 

  • Garcia M, Raes D, Jacobsen S-E, Michel T (2007) Agroclimatic constraints for rainfed agriculture in the Bolivian Altiplano. J Arid Environ 71(1):109–121. https://doi.org/10.1016/j.jaridenv.2007.02.005

    Article  Google Scholar 

  • Garcia M, Condori B, Castillo CD (2015) Agroecological and agronomic cultural practices of Quinoa in South America. In: Quinoa: improvement and sustainable production. Wiley, pp 25–46. https://doi.org/10.1002/9781118628041.ch3

  • Giuliani A, Hintermann F, Rojas W, Padulosi S (2012) Biodiversity of Andean Grains: balancing market potential and sustainable livelihoods. Bioversity International, Rome

    Google Scholar 

  • Gorinstein S, Drzewiecki J, Delgado-Licon E, Pawelzik E, Ayala ALM, Medina OJ, Haruenkit R, Trakhtenberg S (2005) Relationship between dicotyledone-amaranth, quinoa, fagopyrum, soybean and monocots- sorghum and rice based on protein analyses and their use as substitution of each other. Eur Food Res Technol 221(1–2):69–77. https://doi.org/10.1007/s00217-005-1208-2

    Article  Google Scholar 

  • Gross R, Koch F, Malaga I, De Miranda AF, Schoeneberger H, Trugo LC (1989) Chemical composition and protein quality of some local Andean food sources. Food Chem 34(1):25–34. https://doi.org/10.1016/0308-8146(89)90030-7

    Article  Google Scholar 

  • Hervé D, Ledezma R, Orsag V (2002) Limitantes y manejo de los suelos salinos y/o sódicos en el Altiplano Boliviano, CONDESAN–Consorcio para el Desarrollo Sostenible de la Ecorregion Andina, IRD—Institut de recherche pour le développement, La Paz, Junio 2002, 275p

    Google Scholar 

  • Instituto Nacional de Estadisticas, INE (2018) Estadisticas economicas. Cuadros Estadisticos: Agricultura Instituto Nacional de Estadisticas (INE), Bolivia. https://wwwinegobbo/indexphp/estadisticaseconomicas/agropecuaria/agricultura/#1559000614062-ed9a91b8-2288. Accessed 20 July 2018

  • Jacobsen S-E (2003) The worldwide potential for Quinoa (Chenopodium quinoa Willd.). Food Rev Intl 19(1–2):167–177. https://doi.org/10.1081/FRI-120018883

    Article  Google Scholar 

  • Jacobsen S-E, Bach AP (1998) The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd.). Seed Sci Technol 26:515–523

    Google Scholar 

  • Jacobsen S-E, Mujica A, Ortiz R (2003) The global potential for quinoa and other Andean crops. Food Rev Intl 19:139–148

    Article  Google Scholar 

  • Jacobsen S-E, Sørensen M, Pedersen S, Weiner J (2013) Feeding the world: genetically modified crops versus agricultural biodiversity. Agron Sustain Dev 33(4):651–662. https://doi.org/10.1007/s13593-013-0138-9

    Article  Google Scholar 

  • Jacobsen S-E, Sørensen M, Pedersen SM, Weiner J (2015) Using our agrobiodiversity: plant-based solutions to feed the world. Agron Sustain Dev 35(4):1217–1235. https://doi.org/10.1007/s13593-015-0325-y

    Article  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM et al (2017) The genome of Chenopodium quinoa. Nature 542(7641):307. https://doi.org/10.1038/nature21370

  • Jahaniaval F, Kakuda Y, Marcone MF (2000) Fatty acid and triacylglycerol compositions of seed oils of five Amaranthus accessions and their comparison to other oils. J Am Oil Chem Soc 77:847. https://doi.org/10.1007/s11746-000-0135-0

    Article  Google Scholar 

  • Juengst SL, Chávez SJ, Hutchinson DL, Chávez SR (2016) Late preceramic forager–herders from the Copacabana Peninsula in the Titicaca Basin of Bolivia: a bioarchaeological analysis. Int J Osteoarchaeol 27(3):430–440. https://doi.org/10.1002/oa.2566

    Article  Google Scholar 

  • Kent N (1983) Technology of cereals, 3rd edn. Pergamon Press, Oxford, New York

    Google Scholar 

  • Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111(11):4001–4006. https://doi.org/10.1073/pnas.1313490111

    Article  Google Scholar 

  • Koyro H-W, Khan MA, Lieth H (2011) Halophytic crops: a resource for the future to reduce the water crisis? Emir J Food Agric 23(1):1–16

    Article  Google Scholar 

  • Langlie BAS, Hastorf CA, Bruno MC, Bermann M, Bonzani RM, Castellon WC (2011) Diversity in Andean Chenopodium domestication: describing a new morphological type from La Barca, Bolivia 1300–1250 B.C. J Ethnobiol 31(1):72–88. https://doi.org/10.2993/0278-0771-31.1.72

    Article  Google Scholar 

  • Lanza Lobo C (2017) Los nuevos indígenas urbanos comen chatarra. Diario Pagina Siete. http://www.paginasiete.bo/ideas/2017/2/26/nuevos-indigenas-urbanos-comen-chatarra-128481.html. Accessed 21 Oct 2017

  • Mamani F (2011) Estacion Experimental Choquenaira – Programa Granos Andinos. Paper presented at the Reunion Interna – IIAREN, 27 de Julio de 2011, Facultad de Agronomia, Universidad Mayor de San Andres

    Google Scholar 

  • Mamani E (2013) Caracterizacion molecular de 26 accesiones de cañihua (Chenopodium pallidicaule Aellen) con mayor rendimiento en grano: Altiplano – Puno. Universidad Nacional del Altiplano. Escuela de Post Grado, Programa de Doctorado: Doctorado en Ciencia, Tecnologia y Medio Ambiente, Puno

    Google Scholar 

  • Marquez J (2015) Tres abonos organicos en el cultivo de cañihua (Chenopodium pallidicaule Aellen) var. Illpa INIA 406 bajo riego por goteo en la irrigacion Majes-Arequipa. Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa

    Google Scholar 

  • Maydana E (2010) Evaluacion de la produccion de seis variedades de cañahua (Chenopodium pallidicaule Aellen) con participacion de agricultores en la comunidad de Pacaure del Municipio de Mocomoco. Thesis, Universidad Mayor de San Andres, La Paz

    Google Scholar 

  • Montealvo G, Solorza-Feria J, Velázquez del Valle M et al (2005) Composición química y caracterización calorimétrica de híbridos y variedades de maíz cultivadas en México. Revista Agrociencia 39(3):267–274

    Google Scholar 

  • MINAGRI (2017) MINAGRI impulsa duplicar el consumo de granos andinos en los próximos cinco años. MINAGRI, Ministerio de Agricultura y Riego. http://www.minagri.gob.pe/portal/publicaciones-y-prensa/noticias-2017/19529-minagri-impulsa-duplicar-el-consumo-de-granos-andinos-en-los-proximos-cinco-anos. Accessed 25 Oct 2017

  • Ministerio de Salud-Bolivia (2017) En Bolivia se incrementa casos de Diabetes Mellitus y el Ministerio de Salud busca mejorar diagnóstico de la enfermedad. https://www.minsalud.gob.bo/2703-en-bolivia-se-incrementa-casos-de-diabetes-mellitus-y-elministerio-de-salud-busca-mejorar-diagnostico-de-la-enfermedad-2. Accessed 28 Oct 2017

  • Mundigler N (1998) Isolation and determination of starch from amaranth (Amaranthus cruentus) and quinoa (Chenopodium quinoa). Starch/Stärke 50(2–3):67–69. https://doi.org/10.1002/(SICI)1521-379X(199803)50:2/3<67::AID-STAR67>3.0.CO;2-R

    Article  Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247(1):93–105. https://doi.org/10.1023/a:1021119414799

    Article  Google Scholar 

  • Nascimento AC, Mota C, Coelho I, Gueifão S, Santos M, Matos AS, Gimenez A, Lobo M, Samman N, Castanheira I (2014) Characterization of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the north of Argentina: proximates, minerals and trace elements. Food Chem 148:420–426. https://doi.org/10.1016/j.foodchem.2013.09.155

    Article  Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179(1):3–18. https://doi.org/10.1007/s10681-011-0359-4

    Article  Google Scholar 

  • Paucara L (2016) Comportamiento agronomico de quince lineas de cañahua (Chenopodium pallidicaule Aellen), en la Estacion Experimental de Quipaquipani del departamento de La Paz. Facultad de Agronomía, Universidad Mayor de San Andres, La Paz

    Google Scholar 

  • Peñarrieta JM, Alvarado JA, Akesson B, Bergenstahl B (2008) Total antioxidant capacity and content of flavonoids and other phenolic compounds in cañihua (Chenopodium pallidicaule): an Andean pseudocereal. Mol Nutr Food Res 52(6):708–717. https://doi.org/10.1002/mnfr.200700189

    Article  Google Scholar 

  • Quispe E (2004) Morfología y variabilidad de las cañahuas cultivadas (Chenopodium pallidicaule Aellen). Tesis Ing. Agr., Universidad Mayor de San Simon, Cochabamba

    Google Scholar 

  • Quispe J (2015) Cañahua y amaranto, ayuda para diabéticos. La Razón (Edición Impresa), 7 de Agosto de 2015

    Google Scholar 

  • Ramirez D (2014) Efecto de la aplicacion del fertirriego con la incorporacion de Biol-bovino en el cultivo de cañahua (Chenopodium pallidicaule Aellen) en la Estacion Experimental Choquenaira. Facultad de Agronomía, UMSA, La Paz

    Google Scholar 

  • Rastrelli L, DeSimone F, Schettino O, Dini A (1996) Constituents of Chenopodium pallidicaule (Cañihua) seeds: isolation and characterization of new triterpene saponins. J Agric Food Chem 44(11):3528–3533. https://doi.org/10.1021/jf950253p

    Article  Google Scholar 

  • Repo-Carrasco R (2011) Andean indigenous food crops: nutritional value and bioactive compounds. University of Turku, Turku

    Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Rev Intl 19(1–2):179–189. https://doi.org/10.1081/fri-120018884

    Article  Google Scholar 

  • Repo-Carrasco-Valencia R, Acevedo de La Cruz A, Icochea Alvarez JC, Kallio H (2009) Chemical and functional characterization of Kañiwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods Hum Nutr 64(2):94–101. https://doi.org/10.1007/s11130-009-0109-0

    Article  Google Scholar 

  • Repo-Carrasco-Valencia R, Hellstrom JK, Pihlava J-M, Mattila PH (2010) Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem 120(1):128–133. https://doi.org/10.1016/j.foodchem.2009.09.087

    Article  Google Scholar 

  • Repo-Carrasco-Valencia R, Melgarejo S, Pihlava JM (2019) Nutritional value and bioactive compounds in quinoa (Chenopodium quinoa Willd.), Kañiwa (Chenopodium pallidicaule Aellen) and Kiwicha (Amaranthus caudatus L.). Quinoa: cultivation, nutritional properties and effects on health

    Google Scholar 

  • Rodriguez JP, Mamani F (2016) Participatory breeding and gender role in cañahua, a NUS Andean Grain crop in Bolivia. In: Gender, breeding and genomics – case studies, workshop held 18–21 October 2016, CGIAR Gender and Agriculture Research Network, Nairobi, p 5

    Google Scholar 

  • Rodriguez JP, Jacobsen S-E, Sørensen M, Andreasen C (2016) Germination responses of Cañahua (Chenopodium pallidicaule Aellen) to temperature and sowing depth: a crop growing under extreme conditions. J Agron Crop Sci 202(6):542–553. https://doi.org/10.1111/jac.12158

    Article  Google Scholar 

  • Rodriguez JP, Aro M, Coarite M, Jacobsen S-E, Ørting B, Sørensen M, Andreasen C (2017) Seed shattering of Cañahua (Chenopodium pallidicaule Aellen). J Agron Crop Sci 203(3):254–267. https://doi.org/10.1111/jac.12192

    Article  Google Scholar 

  • Rojas W, Pinto M, Soto JL (2004) La erosion genetica de la cañahua LEISA. Revista de Agroecologia 20(1):35–36

    Google Scholar 

  • Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (2010) Granos andinos: avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Roma

    Google Scholar 

  • Serrano R (2012) Distribución de la diversidad genética y etnobotánica de cañahua (Chenopodium pallidicaule Aellen) en las comunidades del Altiplano Norte. Facultad de Agronomía, Universidad Mayor de San Andres, La Paz

    Google Scholar 

  • Singh N, Singh P (2011) Amaranth: potential source for flour enrichment. In: Preedy VR, Watson RR, Pater VB (eds) Flour and breads and their fortification in health and disease prevention. Elsevier, p 102

    Google Scholar 

  • Sistema Integrado de Estadistica Agraria, SIEA (2018) Anuario estadistico de produccion agropecuaria. Ministerio de Agricultura y Riego, Minagri, Peru. http://siea.minagri.gob.pe/siea/?q=publicaciones/anuario-de-produccion-agricola. Accessed 28 Sept 2018

  • Soto JL, Valdivia R, Solano OC (2017) Normas tecnicas Peruanas – Requisistos de calidad para granos Andinos. Paper presented at the 6to Congreso Mundial de la Quinua, 3er Simposio Internacional de Granos Andinos, Puno, 2017-03-21/2017-03-24

    Google Scholar 

  • Spehar CR, Santos RLD (2002) Quinoa BRS Piabiru: alternative for diversification of cropping systems. Pesquisa Agropecuaria Brasileira 37(6):889–893. https://doi.org/10.1590/s0100-204x2002000600020

    Article  Google Scholar 

  • St.Clair SB, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335(1):101–115. https://doi.org/10.1007/s11104-010-0328-z

    Article  Google Scholar 

  • Steinmaus S, Prather TS, Holt JS (2000) Estimation of base temperatures for nine weed species. J Exp Bot 51(343):275–286. https://doi.org/10.1093/jexbot/51.343.275

    Article  Google Scholar 

  • Tapia M (1997) Cultivos Andinos Subexplotados y su aporte a la alimentación. Oficina Regional de la FAO para America Latina y el Caribe, Santiago

    Google Scholar 

  • Tapia ME, Fries AM (2007) Guía de campo de los cultivos andinos. FAO, ANPE-PERÚ. http://www.fao.org/3/ai185s/ai185s00.htm. Accessed 21 Sept 2018

  • Ticona JC (2011) Efecto de la Biofertilizacion en dos lineas de cañahua (Chenopodium pallidicaule Aellen), en Calasaya Provincia Los Andes. Facultad de Agronomía, Universidad Mayor de San Andres, La Paz

    Google Scholar 

  • Vacher JJ (1998) Response of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: significance of local adaptation. Agric Ecosyst Environ 68:99–108

    Article  Google Scholar 

  • Vacher JJ, Imaña E (1987) Los riesgos climaticos en el altiplano Boliviano. OMM-SENAMHI-ORSTOM, La Paz

    Google Scholar 

  • Vidaurre R (2002) Determinación de la epoca optima de cosecha en tres cultivares de saihua de cañahua (Chenopodium pallidicaule Aellen). Facultad de Agronomía, UMSA, La Paz

    Google Scholar 

  • Villena JE (2016) Epidemiologia de la diabetes Mellitus en el Peru. Diagnostico 55(4) Octubre – Diciembre, pp 173–181

    Google Scholar 

  • World Health Organization (2016) Global report on diabetes, Switzerland, 88p. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf?ua=1

Download references

Acknowledgements

The authors are grateful to DANIDA (Danish International Development Agency) for funding the project AndesCrop No. 104, Dan. 8-1203 that enabled to carry out the research on cañahua. Furthermore, to International Centre for Biosaline Agriculture, ICBA, for the opportunity to publish this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodriguez, J.P., Jacobsen, SE., Andreasen, C., Sørensen, M. (2020). Cañahua (Chenopodium pallidicaule): A Promising New Crop for Arid Areas. In: Hirich, A., Choukr-Allah, R., Ragab, R. (eds) Emerging Research in Alternative Crops. Environment & Policy, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-90472-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90472-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90471-9

  • Online ISBN: 978-3-319-90472-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics