Skip to main content

Tiered Approaches to Incorporate the Adverse Outcome Pathway Framework into Chemical-Specific Risk-Based Decision Making

  • Chapter
  • First Online:
A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment

Abstract

The concept of Adverse Outcome Pathways (AOPs) arose as a means of addressing the challenges associated with establishing relationships between high-throughout (HT) in vitro dose response data and in vivo biological outcomes. However, AOP development has also been met with challenges of its own, such as the time, effort, and expertise necessary to achieve a scientifically sound construct able to support ecotoxicology and human health risk assessment. Thus, a staged development process has been developed to match the information content of an AOP with the decision context in which it will be used. This approach allows effort to be spent on detailed evidence evaluation and quantitative assessment of the dose-response characteristics for those AOPs where this level of confidence and precision is needed. In addition, through advances in computational analytical methodologies that integrate HT data (e.g., transcriptomic data) with traditional toxicology information spanning a broad chemical and biological space, computationally predicted AOPs can be rapidly generated to help accelerate the curation of AOPs. AOPs are chemical agnostic thereby allowing a single AOP to be coupled with in vitro dose-response information from a variety of chemicals. To predict an in vivo outcome, however, exposure and pharmacokinetic characteristics (i.e., absorption, metabolism, distribution, and elimination) must be considered. As with the staged development process for AOPs, it is possible to develop ADME predictions in a tiered manner such that lower tiers provide qualitative or semi-quantitative predictions when data is lacking, and higher tiers provide quantitative predictions with increasing confidence when data is abundant. Tiered approaches to AOP development and ADME predictions provide a mechanism for using AOPs, with chemical-specific exposure and pharmacokinetic considerations, for risk assessment both in data poor and data rich scenarios. They also provide a natural mechanism for identifying areas of research that would have the highest impact on risk-based decision making by highlighting AOPs and/or ADME predictions that are insufficient to address the decision context in which they could be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • AbdulHameed MDM, Tawa GJ, Kumar K et al (2014) Systems level analysis and identification of pathways and networks associated with liver fibrosis. PLoS One 9:e112193. doi:10.1371/journal.pone.0112193

    Article  PubMed  PubMed Central  Google Scholar 

  • Abt E, Rodricks JV, Levy JI et al (2010) Science and decisions: advancing risk assessment. Risk Anal 30:1028–1036. doi:10.1111/j.1539-6924.2010.01426.x

    Article  PubMed  Google Scholar 

  • Alves VM, Muratov E, Fourches D et al (2015a) Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization. Toxicol Appl Pharmacol 284:273–280. doi:10.1016/j.taap.2014.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves VM, Muratov E, Fourches D et al (2015b) Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol Appl Pharmacol 284:262–272. doi:10.1016/j.taap.2014.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen ME, Krewski D (2009) Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci 107:324–330. doi:10.1093/toxsci/kfn255

    Article  CAS  PubMed  Google Scholar 

  • Andrade CH, Silva DC, Braga RC (2014) In silico prediction of drug metabolism by P450. Curr Drug Metab 15:514–525

    Article  CAS  PubMed  Google Scholar 

  • Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. doi:10.1002/etc.34

    Article  CAS  PubMed  Google Scholar 

  • Austin C, Kavlock RJ, Tice R (2008) Tox21: putting a lens on the vision of toxicity testing in the 21st century. Available via AltTox.org. http://alttox.org/tox21-putting-a-lens-on-the-vision-of-toxicity-testing-in-the-21st-century/. Accessed 30 May 2016

  • Becker RA, Ankley GT, Edwards SW et al (2015) Increasing scientific confidence in adverse outcome pathways: application of tailored Bradford-Hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol 72:514–537. doi:10.1016/j.yrtph.2015.04.004

    Article  PubMed  Google Scholar 

  • Bell SM, Angrish MM, Wood CE, Edwards SW (2016) Integrating publicly available data to generate computationally predicted Adverse Outcome Pathways for fatty liver. Toxicol Sci 150:510–520. doi:10.1093/toxsci/kfw017

    Article  CAS  PubMed  Google Scholar 

  • Benford D, Bolger PM, Carthew P et al (2010) Application of the margin of exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food Chem Toxicol 48(Suppl 1):S2–24. doi:10.1016/j.fct.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  • Binetti R, Costamagna FM, Marcello I (2008) Exponential growth of new chemicals and evolution of information relevant to risk control. Ann Ist Super Sanita 44:13–15

    CAS  PubMed  Google Scholar 

  • Boobis AR, Cohen SM, Dellarco V et al (2008) IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol 36:781–792. doi:10.1080/10408440600977677

    Article  Google Scholar 

  • Browne P, Judson RS, Casey WM et al (2015) Screening chemicals for estrogen receptor bioactivity using a computational model. Environ Sci Technol 49:8804–8814. doi:10.1021/acs.est.5b02641

    Article  CAS  PubMed  Google Scholar 

  • Caldwell JC, Evans MV, Krishnan K (2012) Cutting edge PBPK models and analyses: providing the basis for future modeling efforts and bridges to emerging toxicology paradigms. J Toxicol. doi:10.1155/2012/852384

  • Davis JA, Gift JS, Zhao QJ (2011) Introduction to benchmark dose methods and U.S. EPA’s benchmark dose software (BMDS) version 2.1.1. Toxicol Appl Pharmacol 254:181–191. doi:10.1016/j.taap.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  • Dimelow RJ, Metcalfe PD, Thomas S, Lyubimov AV (2011) In silico models of drug metabolism and drug interactions. In: Lyubimov A (ed) Encyclopedia of drug metabolism and interactions, vol V1. Wiley, Hoboken, pp 1–55

    Google Scholar 

  • Downs CA, Kramarsky-Winter E, Fauth JE et al (2013) Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata. Ecotoxicology 23:175–191. doi:10.1007/s10646-013-1161-y

    Article  PubMed  Google Scholar 

  • Egeghy PP, Judson R, Gangwal S et al (2012) The exposure data landscape for manufactured chemicals. Sci Total Environ 414:159–166. doi:10.1016/j.scitotenv.2011.10.046

    Article  CAS  PubMed  Google Scholar 

  • Eisenbrand G, Pool-Zobel B, Baker V et al (2002) Methods of in vitro toxicology. Food Chem Toxicol 40:193–236. doi:10.1016/S0278-6915(01)00118-1

    Article  CAS  PubMed  Google Scholar 

  • Filipsson AF, Sand S, Nilsson J, Victorin K (2003) The benchmark dose method–review of available models, and recommendations for application in health risk assessment. Crit Rev Toxicol 33:505–542. doi:10.1080/10408440390242360

    CAS  PubMed  Google Scholar 

  • Goldsmith MR, Peterson SD, Chang DT et al (2012) Informing mechanistic toxicology with computational molecular models. Methods Mol Biol 929:139–165. doi:10.1007/978-1-62703-050-2_7

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith M-R, Grulke CM, Brooks RD et al (2014) Development of a consumer product ingredient database for chemical exposure screening and prioritization. Food Chem Toxicol 65:269–279. doi:10.1016/j.fct.2013.12.029

    Article  CAS  PubMed  Google Scholar 

  • Groh KJ, Carvalho RN, Chipman JK et al (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere 120:764–777. doi:10.1016/j.chemosphere.2014.09.068

    Article  CAS  PubMed  Google Scholar 

  • Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacs KK, Glen WG, Egeghy P et al (2014) SHEDS-HT: an integrated probabilistic exposure model for prioritizing exposures to chemicals with near-field and dietary sources. Environ Sci Technol 48:12750–12759. doi:10.1021/es502513w

    Article  CAS  PubMed  Google Scholar 

  • Jameson JL, Wheetman AP (2001) Disorders of the thyroid gland. In: Braunwald E, Fauci AS, Kasper DL et al (eds) Harrsison’s principles of internal medicine; chapter 405, 11th edn. McGraw-Hill, New York, pp 2048–2060

    Google Scholar 

  • Judson RS, Kavlock RJ, Setzer RW et al (2011) Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment. Chem Res Toxicol 24:451–462. doi:10.1021/tx100428e

    Article  CAS  PubMed  Google Scholar 

  • Judson R, Houck K, Martin M et al (2014) In vitro and modelling approaches to risk assessment from the U.S. Environmental Protection Agency ToxCast programme. Basic Clin Pharmacol Toxicol 115:69–76. doi:10.1111/bcpt.12239

    Article  CAS  PubMed  Google Scholar 

  • Judson RS, Magpantay FM, Chickarmane V et al (2015) Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor. Toxicol Sci 148:137–154. doi:10.1093/toxsci/kfv168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavlock RJ, Austin CP, Tice R (2009) Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal 29:485–497. doi:10.1111/j.1539-6924.2008.01168.x

    Article  PubMed  Google Scholar 

  • Kirchmair J, Göller AH, Lang D et al (2015) Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov 14:387–404. doi:10.1038/nrd4581

    Article  CAS  PubMed  Google Scholar 

  • Kirkland D, Zeiger E, Madia F et al (2014) Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? I. Reports of individual databases presented at an EURL ECVAM workshop. Mutat Res Genet Toxicol Environ Mutagen 775–776:55–68. doi:10.1016/j.mrgentox.2014.10.005

    Article  PubMed  Google Scholar 

  • Kleinstreuer NC, Judson RS, Reif DM et al (2011) Environmental impact on vascular development predicted by high-throughput screening. Environ Health Perspect 119:1596–1603. doi:10.1289/ehp.1103412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer VJ, Etterson MA, Hecker M et al (2011) Adverse outcome pathways and ecological risk assessment: bridging to population-level effects. Environ Toxicol Chem 30:64–76. doi:10.1002/etc.375

    Article  CAS  PubMed  Google Scholar 

  • Krewski D, Andersen ME, Mantus E, Zeise L (2009) Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal 29:474–479. doi:10.1111/j.1539-6924.2008.01150.x

    Article  PubMed  Google Scholar 

  • Leonard JA, Sobel Leonard A, Chang DT et al (2016a) Evaluating the impact of uncertainties in clearance and exposure when prioritizing chemicals screened in high-throughput assays. Environ Sci Technol. doi:10.1021/acs.est.6b00374. Epub ahead of print

  • Leonard JA, Tan Y-M, Gilbert M et al (2016b) Estimating margin of exposure to thyroid peroxidase inhibitors using high-throughput in vitro data, high-throughput exposure modeling, and physiologically based pharmacokinetic/pharmacodynamic modeling. Toxicol Sci 151:57–70. doi:10.1093/toxsci/kfw022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JH, Lu AYH (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449

    CAS  PubMed  Google Scholar 

  • MacIntosh DL, Spengler JD (2000) Human exposure assessment. World Health Organization, Geneva, p 375. Accessed 31 Aug 2016. http://www.inchem.org/documents/ehc/ehc/ehc214.htm

    Google Scholar 

  • Mackay D, Giesy JP, Solomon KR (2014) Fate in the environment and long-range atmospheric transport of the organophosphorus insecticide, chlorpyrifos and its oxon. Rev Environ Contam Toxicol 231:35–76. doi:10.1007/978-3-319-03865-0_3

    CAS  PubMed  Google Scholar 

  • McCurdy T, Glen G, Smith L, Lakkadi Y (2000) The national exposure research laboratory’s consolidated human activity database. J Expo Anal Environ Epidemiol 10:566–578

    Article  CAS  PubMed  Google Scholar 

  • Meek MEB, Bucher JR, Cohen SM et al (2003) A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol 33:591–653. doi:10.1080/713608373

    Article  PubMed  Google Scholar 

  • Meek ME, Boobis A, Cote I et al (2014) New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol 34:1–18. doi:10.1002/jat.2949

    Article  CAS  PubMed  Google Scholar 

  • Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 35:401–413

    CAS  PubMed  Google Scholar 

  • Myint KZ, Xie X-Q (2010) Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int J Mol Sci 11:3846–3866. doi:10.3390/ijms11103846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (NRC) (1983) Risk assessment in the Federal Government: managing the process. National Academies Press, Washington, DC

    Google Scholar 

  • National Research Council (NRC) (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academies Press, Washington, DC

    Google Scholar 

  • National Research Council (NRC) (2009) Science and decisions. National Academies Press, Washington, DC

    Google Scholar 

  • Oki NO, Nelms MD, Bell SM et al (2016) Accelerating adverse outcome pathway development using publicly available data sources. Curr Environ Health Rep 3:53–63. doi:10.1007/s40572-016-0079-y

    Article  PubMed  Google Scholar 

  • Organization for Economic Cooperation and Development (OECD) (2013a) Guidance document on developing and assessing adverse outcome pathways. Available via OECD. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2013)6&doclanguage=en. Accessed 30 May 2016

  • Organization for Economic Cooperation and Development (OECD) (2013b) Users’ handbook supplement to the guidance document for developing and assessing AOPs. Available via OECD. http://aopkb.org/common/AOP_Handbook.pdf. Accessed 14 Apr 2016

  • Patlewicz G, Simon TW, Rowlands JC et al (2015) Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes. Regul Toxicol Pharmacol 71:463–477. doi:10.1016/j.yrtph.2015.02.011

    Article  PubMed  Google Scholar 

  • Paul KB, Hedge JM, Rotroff DM et al (2014) Development of a thyroperoxidase inhibition assay for high-throughput screening. Chem Res Toxicol 27:387–399. doi:10.1021/tx400310w

    Article  CAS  PubMed  Google Scholar 

  • Perkins EJ, Chipman JK, Edwards S et al (2011) Reverse engineering adverse outcome pathways. Environ Toxicol Chem 30:22–38. doi:10.1002/etc.374

    Article  CAS  PubMed  Google Scholar 

  • Perkins EJ, Antczak P, Burgoon L et al (2015) Adverse outcome pathways for regulatory applications: examination of four case studies with different degrees of completeness and scientific confidence. Toxicol Sci 148:14–25. doi:10.1093/toxsci/kfv181

    Article  CAS  PubMed  Google Scholar 

  • Phillips RD, Bahadori T, Barry BE et al (2009) Twenty-first century approaches to toxicity testing, biomonitoring, and risk assessment: perspectives from the global chemical industry. J Expo Sci Environ Epidemiol 19:536–543. doi:10.1038/jes.2009.38

    Article  CAS  PubMed  Google Scholar 

  • Phillips MB, Leonard JA, Grulke CM et al (2016) A workflow to investigate exposure and pharmacokinetics influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ Health Perspect 124:53–60. doi:10.1289/ehp.140945

    PubMed  Google Scholar 

  • Seed J, Carney EW, Corley RA et al (2005) Overview: using mode of action and life stage information to evaluate the human relevance of animal toxicity data. Crit Rev Toxicol 35:664–672

    Article  PubMed  Google Scholar 

  • Shlomi T, Cabili MN, Herrgard MJ et al (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26:1003–1010. doi:10.1038/nbt.1487. [pii]10.1038/nbt.1487

    Article  CAS  PubMed  Google Scholar 

  • Shukla SJ, Huang R, Austin CP, Xia M (2010) The future of toxicity testing: a focus on in vitro methods using a quantitative high throughput screening platform. Drug Discov Today 15:997–1007. doi:10.1016/j.drudis.2010.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons JE, Evans MV, Boyes WK (2005) Moving from external exposure concentration to internal dose: duration extrapolation based on physiologically based pharmacokinetic derived estimates of internal dose. J Toxicol Environ Health A 68:927–950. doi:10.1080/15287390590912586

    Article  CAS  PubMed  Google Scholar 

  • Soldatow VY, LeCluyse EL, Griffith LG, Rusyn I (2013) In vitro models for liver toxicity testing. Toxicol Res (Camb) 2:23–39. doi:10.1039/C2TX20051A

    Article  CAS  Google Scholar 

  • Stadnicka-Michalak J, Tanneberger K, Schirmer K, Ashauer R (2014) Measured and modeled toxicokinetics in cultured fish cells and application to in vitro – in vivo toxicity extrapolation. PLoS One 9:e92303. doi:10.1371/journal.pone.0092303

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H (2005) Predicting ADMET properties by projecting onto chemical space: benefits and pitfalls. Curr Comput – Aided Drug Des 1:179–193. doi:10.2174/1573409053585708

    Article  CAS  Google Scholar 

  • Sun H, Xia M, Austin CP, Huang R (2012) Paradigm shift in toxicity testing and modeling. AAPS J 14:473–480. doi:10.1208/s12248-012-9358-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson A, Griffin P, Stuetz R, Cartmell E (2005) The fate and removal of triclosan during wastewater treatment. Water Environ Res 77:63–67. doi:10.2175/106143005X41636

    Article  CAS  PubMed  Google Scholar 

  • Tollefsen KE, Scholz S, Cronin MT et al (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol 70:629–640. doi:10.1016/j.yrtph.2014.09.009

    Article  PubMed  Google Scholar 

  • Villeneuve DL, Crump D, Garcia-Reyero N et al (2014a) Adverse outcome pathway development II: best practices. Toxicol Sci 142:321–330. doi:10.1093/toxsci/kfu200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villeneuve DL, Crump D, Garcia-Reyero N et al (2014b) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320. doi:10.1093/toxsci/kfu199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158–165. doi:10.1016/j.tox.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  • Wambaugh JF, Wang A, Dionisio KL et al (2014) High throughput heuristics for prioritizing human exposure to environmental chemicals. Environ Sci Technol 48:12760–12767. doi:10.1021/es503583j

    Article  CAS  PubMed  Google Scholar 

  • Wegner JK, Fröhlich H, Mielenz HM, Zell A (2006) Data and graph mining in chemical space for ADME and activity data sets. QSAR Comb Sci 25:205–220. doi:10.1002/qsar.200510009

    Article  CAS  Google Scholar 

  • Wetmore BA, Wambaugh JF, Allen B et al (2015) Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing. Toxicol Sci 148:121–136. doi:10.1093/toxsci/kfv171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996. doi:10.1021/ci9800211

    Article  CAS  Google Scholar 

  • Yang C, Tarkhov A, Marusczyk J et al (2015) New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling. J Chem Inf Model 55:510–528. doi:10.1021/ci500667v

    Article  CAS  PubMed  Google Scholar 

  • Zurlo J, Rudacille D, Goldberg AM (2001) Animals and alternatives in testing: history, science, and ethics. Mary Ann Liebert, Larchmont

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Edwards .

Editor information

Editors and Affiliations

Additional information

Disclaimer 

The information in this document has been funded wholly (or in part) by the U. S. Environmental Protection Agency. It has been subjected to review by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leonard, J., Bell, S., Oki, N., Nelms, M., Tan, YM., Edwards, S. (2018). Tiered Approaches to Incorporate the Adverse Outcome Pathway Framework into Chemical-Specific Risk-Based Decision Making. In: Garcia-Reyero, N., Murphy, C. (eds) A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-66084-4_12

Download citation

Publish with us

Policies and ethics