Skip to main content

Modelling Simple Toxicity Endpoints: Alerts, (Q)SARs and Beyond

  • Chapter
  • First Online:
Advances in Computational Toxicology

Abstract

The correlation of chemical structure with physicochemical and biological data to assess a desired or undesired biological outcome now utilises both qualitative and quantitative structure–activity relationships ((Q)SARs) and advanced computational methods . The adoption of in silico methodologies for predicting toxicity, as decision support tools, is now a common practice in both developmental and regulatory contexts for certain toxicity endpoints. The relative success of these tools has unveiled further challenges relating to interpreting and applying the results of models. These include the concept of what makes a negative prediction and exploring the use of test data to make quantitative predictions. Due to several factors, including the lack of understanding of mechanistic pathways in biological systems, modelling complex endpoints such as organ toxicity brings new challenges. The use of the adverse outcome pathway (AOP) framework as a construct to arrange models and data, to tackle such challenges, is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(Q)SAR:

(Quantitative) structure–activity relationship

ADME:

Adsorption, distribution, metabolism, and excretion

AOP:

Adverse outcome pathway

BSEP:

Bile salt export pump

DA:

Defined approach

DMSO:

Dimethyl sulphoxide

DNA:

Deoxyribonucleic acid

DPRA:

Direct peptide reactivity assay

EC3:

Effective concentration to cause a threefold increase in T-cell proliferation

GHS:

Globally harmonised system

GPMT:

Guinea pig maximisation test

h-CLAT:

Human cell line activation test

IATA:

Integrated approach to testing and assessment

KE:

Key event

kNN:

k-Nearest neighbours

LLNA:

Local lymph node assay

MIE:

Molecular initiating event

MW:

Molecular weight

OATP:

Organic anion transporting polypeptide

OECD:

Organisation for Economic Co-operation and Development

PPAR:

Peroxisome proliferator-activated receptor

References

  1. Ashby J, Tennant RW (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat Res 204:17–115

    Article  CAS  PubMed  Google Scholar 

  2. Marchant C et al (2008) In silico tools for sharing data and knowledge on toxicity and metabolism: derek for windows, meteor, and vitic. Toxicol Mech Methods 18:177–187

    Article  CAS  PubMed  Google Scholar 

  3. Barber C et al (2015) Establishing best practise in the application of expert review of mutagenicity under ICH M7. Regul Toxicol Pharmacol 73:367–377

    Article  PubMed  Google Scholar 

  4. Hanser T et al (2014) Self organising hypothesis networks: a new approach for representing and structuring SAR knowledge. J Chemoinf 6:21

    Article  Google Scholar 

  5. Barber C et al (2017) Distinguishing between expert and statistical systems for application under ICH M7. Regul Toxicol Pharmacol 84:124–130

    Article  PubMed  Google Scholar 

  6. Ankley GT et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    Article  CAS  PubMed  Google Scholar 

  7. OECD (2010) Test No. 429: skin sensitisation: local lymph node assay. https://doi.org/10.1787/9789264071100-en. Accessed 28 Aug 2018

  8. ICH (2017) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. M7(R1). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_R1_Addendum_Step_4_31Mar2017.pdf. Accessed 9 Sept 2018

  9. EFSA (2016) Guidance on the establishment of the residue definition for dietary risk assessment. EFSA J 14: 180. https://doi.org/10.2903/j.efsa.2016.4549. Accessed 9 Sept 2018

  10. OECD (2017) Guidance document on the reporting of defined approaches and individual information sources to be used within Integrated Approaches to Testing and Assessment (IATA) for skin sensitisation. In: OECD series on testing and assessment, No. 256. OECD Publishing, Paris. https://doi.org/10.1787/9789264279285-en. Accessed 28 Aug 2018

  11. European Union (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the council of 30 November 2009 on cosmetic products. http://data.europa.eu/eli/reg/2009/1223/oj. Accessed 28 Aug 2018

  12. European Union (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. http://data.europa.eu/eli/reg/2006/1907/2018-05-09. Accessed 28 Aug 2018

  13. Elder DP et al (2015) Mutagenic impurities: precompetitive/competitive collaborative and data sharing initiatives. Org Process Res Dev 19:1486–1494

    Article  CAS  Google Scholar 

  14. Judson PN et al (2013) Assessing confidence in predictions made by knowledge-based systems. Toxicol Res 2:70–79

    Article  CAS  Google Scholar 

  15. Williams RV et al (2016) It’s difficult, but important, to make negative predictions. Regul Toxicol Pharmacol 76:79–86

    Article  CAS  PubMed  Google Scholar 

  16. Derek Nexus v6.0 (Lhasa Limited). https://www.lhasalimited.org/products/derek-nexus.htm. Accessed 28 Aug 2018

  17. Chilton ML et al (2018) Making reliable negative predictions of human skin sensitisation using an in silico fragmentation approach. Regul Toxicol Pharmacol 95:227–235

    Article  CAS  PubMed  Google Scholar 

  18. Canipa SJ et al (2016) A quantitative in silico model for predicting skin sensitization using a nearest neighbours approach within expert-derived structure-activity alert spaces. J Appl Toxicol 37:985–995

    Article  Google Scholar 

  19. OECD (2015) Test No. 442C: In chemico skin sensitisation: Direct Peptide Reactivity Assay (DPRA). https://doi.org/10.1787/9789264229709-en. Accessed 28 Aug 2018

  20. OECD (2018) Key event based test guideline 442D: in vitro skin sensitisation assays addressing the AOP key event on keratinocyte activation. https://doi.org/10.1787/9789264229822-en. Accessed 28 Aug 2018

  21. OECD (2018) Key event based test guideline 442E: In vitro skin sensitisation assays addressing the key event on activation of dendritic cells on the adverse outcome pathway for skin sensitisation. https://doi.org/10.1787/9789264264359-en. Accessed 28 Aug 2018

  22. Kleinstreuer NC et al (2018) Non-animal methods to predict skin sensitization (II): an assessment of defined approaches. Crit Rev Toxicol 48:359–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Macmillan DS et al (2016) Predicting skin sensitisation using a decision tree integrated testing strategy with an in silico model and in chemico/in vitro assays. Regul Toxicol Pharmacol 76:30–38

    Article  CAS  PubMed  Google Scholar 

  24. Barber C et al (2016) Establishing best practise in the application of expert review of mutagenicity under ICH M7. Regul Toxicol Pharmacol 73:367–377

    Article  Google Scholar 

  25. Verheyen GR et al (2017) Evaluation of in silico tools to predict the skin sensitization potential of chemicals. SAR QSAR Environ Res 28:59–73

    Article  CAS  PubMed  Google Scholar 

  26. Dobo KL et al (2012) In silico methods combined with expert knowledge rule out mutagenic potential of pharmaceutical impurities: an industry survey. Regul Toxicol Pharmacol 62:449–455

    Article  CAS  PubMed  Google Scholar 

  27. Kruhlak NL et al (2012) (Q)SAR modeling and safety assessment in regulatory review. Clin Pharmacol Ther 91:529–534

    Article  CAS  PubMed  Google Scholar 

  28. Naven RT et al (2012) Latest advances in computational genotoxicity prediction. Expert Opin Drug Metab Toxicol 8:1579–1587

    Article  PubMed  Google Scholar 

  29. Sutter A et al (2013) Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharmacol 67:39–52

    Article  CAS  PubMed  Google Scholar 

  30. Powley MW (2015) (Q)SAR assessments of potentially mutagenic impurities: a regulatory perspective on the utility of expert knowledge and data submission. Regul Toxicol Pharmacol 71:295–300

    Article  CAS  PubMed  Google Scholar 

  31. Greene N et al (2015) A practical application of two in silico systems for identification of potentially mutagenic impurities. Regul Toxicol Pharmacol 72:335–349

    Article  CAS  PubMed  Google Scholar 

  32. Amberg A et al (2016) Principles and procedures for implementation of ICH M7 recommended (Q)SAR analyses. Regul Toxicol Pharmacol 77:13–24

    Article  CAS  PubMed  Google Scholar 

  33. Myatt GJ et al (2018) In silico toxicology protocols. Regul Toxicol Pharmacol 96:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roberts DW et al (2016) Chemical applicability domain of the Local Lymph Node Assay (LLNA) for skin sensitisation potency. Part 3. Apparent discrepancies between LLNA and GPMT sensitisation potential: false positives or differences in sensitivity? Regul Toxicol Pharmacol 80:260–267

    Article  CAS  PubMed  Google Scholar 

  35. Honda H et al (2016) Modified Ames test using a strain expressing human sulfotransferase 1C2 to assess the mutagenicity of methyleugenol. Genes Environ. https://doi.org/10.1186/s41021-016-0028-x

  36. Amberg A et al (2015) Do carboxylic/sulfonic acid halides really present a mutagenic and carcinogenic risk as impurities in final drug products? Org Process Res Dev 19:1495–1506

    Article  CAS  Google Scholar 

  37. Sarah Nexus v3.0 (Lhasa Limited). https://www.lhasalimited.org/products/sarah-nexus.htm. Accessed 28 Aug 2018

  38. Myden A et al (2017) Utility of published DNA reactivity alerts. Regul Toxicol Pharmacol 88:77–86

    Article  PubMed  Google Scholar 

  39. Faulkner D et al (2017) Tools for green molecular design to reduce toxicological risk. In: Johnson DE, Richardson RJ (eds) Computational systems pharmacology and toxicology, Royal Society of Chemistry, London, Chapter 3, p 36–59

    Google Scholar 

  40. Canipa S et al (2015) Using in vitro structural alerts for chromosome damage to predict in vivo activity and direct future testing. Mutagenesis 31:17–25

    PubMed  Google Scholar 

  41. Egan WJ et al (2004) In silico prediction of drug safety: despite progress there is abundant room for improvement. Drug Discov Today Technol 1:381–387

    Article  CAS  PubMed  Google Scholar 

  42. Greene N et al (2010) Developing structure-activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol 23:1215–1222

    Article  CAS  PubMed  Google Scholar 

  43. Hewitt M et al (2013) Hepatotoxicity: a scheme for generating chemical categories for read-across, structural alerts and insights into mechanism(s) of action. Crit Rev Toxicol 43:537–558

    Article  CAS  PubMed  Google Scholar 

  44. Pizzo F et al (2016) A new structure-activity relationship (SAR) model for predicting drug-induced liver injury, based on statistical and expert-based structural alerts. Front Pharmacol. https://doi.org/10.3389/fphar.2016.00442

  45. Liu R et al (2015) Data-driven identification of structural alerts for mitigating the risk of drug-induced human liver injuries. J Cheminf. https://doi.org/10.1186/s13321-015-0053-y

  46. Myshkin E et al (2012) Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations. Chem Biol Drug Des 80:406–416

    Article  CAS  PubMed  Google Scholar 

  47. OECD (2012) AOP knowledgebase. https://aopkb.oecd.org/. Accessed 28 Aug 2018

  48. Thompson RA et al (2016) Reactive metabolites: current and emerging risk and hazard assessments. Chem Res Toxicol 29:505–533

    Article  CAS  PubMed  Google Scholar 

  49. Warner DJ et al (2012) Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification. Drug Metab Dispos 40:2332–2341. https://doi.org/10.1124/dmd.112.047068

    Article  CAS  PubMed  Google Scholar 

  50. Qiu T et al (2018) Finding the molecular scaffold of nuclear receptor inhibitors through high-throughput screening based on proteochemometric modelling. J Cheminf. https://doi.org/10.1186/s13321-018-0275-x

  51. Gadaleta D et al (2018) QSAR modeling of ToxCast assays relevant to the molecular initiating events of AOPs leading to hepatic steatosis. J Chem Inf Model 58:1501–1517

    Article  CAS  PubMed  Google Scholar 

  52. Kotsampasakou E, Ecker GF (2017) Predicting drug-induced cholestasis with the help of hepatic transporters-an in silico modeling approach. J Chem Inf Model 57:608–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Altamira LLC, Molecular Networks GmbH (2013) ChemoTyper. https://chemotyper.org/. Accessed 28 Aug 2018

  54. Liu J et al (2015) Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem Res Toxicol 28:738–751

    Article  CAS  PubMed  Google Scholar 

  55. Liu J et al (2017) Predicting organ toxicity using in vitro bioactivity data and chemical structure. Chem Res Toxicol 30:2046–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carbonell P et al (2017) Hepatotoxicity prediction by systems biology modeling of disturbed metabolic pathways using gene expression data. Altex 34:219–234

    Article  PubMed  Google Scholar 

  57. Kim J, Shin M (2014) An integrative model of multi-organ drug-induced toxicity prediction using gene-expression data. BMC Bioinform. https://doi.org/10.1186/1471-2105-15-s16-s2

  58. Alyass A et al (2015) From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics. https://doi.org/10.1186/s12920-015-0108-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, R., Chilton, M., Macmillan, D., Cayley, A., Fisk, L., Patel, M. (2019). Modelling Simple Toxicity Endpoints: Alerts, (Q)SARs and Beyond. In: Hong, H. (eds) Advances in Computational Toxicology. Challenges and Advances in Computational Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-16443-0_3

Download citation

Publish with us

Policies and ethics